# **eRD6 Tracking Simulation Tools**

### **Matt Posik**

Temple University (For the eRD6 Consortium)

March 12, 2020





# Tracking Simulation Needs

#### ■ Simulation Needs

- 1. Various types of digitization schemes supported by the track fitting code
  - TPC
  - U-V (planar trackers, i.e. GEMs)
  - Z- $\phi$  (cylindrical trackers, e.g. cylindrical MPGD )
- 2. Track fitting code should available and usable
  - No hard coded detector lists or sensitive volumes.
  - Automatic geometry match along the simulation -> digitization -> reconstruction chain
- 3. Symmetric access to simulated (truth) and reconstructed quantities
  - e.g. track parameterizations at various locations
- 4. Material scans
- 5. Easy to use vertexing
- 6. Suite should be modular so swapping detectors in and out does not require a lot of effort such as making changes in multiple places and needing to constantly recompile.
- 7. Continent way to implement background related to beam intensities and interaction rates.













# Tracking Detector Geometries

- □ Simulation geometry and digitization parameters should avoid being hard coded such as drift length, pitch, U-V angle, etc.
  - Geometry and digitization parameter values listed represent nominal values.
- Tracking Endcap Detectors
  - GEM Trackers
    - Several planar layers placed at the endcaps
      - EIC Common GEMs are based on trapezoidal shape (dimensions should be adjustable, i.e. lower/higher width, opening angle, etc.)
        - Nominal values: 30.1° opening angle, Length = 904 mm, small width = 43 mm, large width = 529 mm
      - 12 trapezoids can be arranged to form GEM wheel/disk
    - Digitization: U-V readout strips with adjustable resolutions
  - GEM-TRD
    - Will sit between RHIC and colorimeters to provide seeding for RHIC ring and additional dE/dx to discriminate between  $e/\pi$
    - Triple-GEM detector operating in mini-drift ( $\mu TPC$ )
    - Drift gap uses XeCO2 and is about 3 cm (this should be adjusted by the user)
    - dE/dX used to discriminate between  $e/\pi$
    - Digitization: u-v readout strips
      - Several hit points within the gas gap. How many?
        - Hit points and resolution vary with track angle entering the detector. How to implement?
        - Can these hit points be fit and form tracklets and obtain a track pointing vector?













## Tracking Detector Geometries

- ☐ Tracking Central Detectors
  - TPC (central region)
    - Similar parameters as sPHENIX TPC
    - Need to assess dE/dX performance **critical** for PID at EIC
  - Cylindrical MPGD ( $\mu RWELL$ ) for fast timing operating in mini-drift ( $\mu TPC$ ) mode
    - Surround TPC
    - Allow for variable detector radius, length, and gas gap thickness
      - Nominal Values: radius = 80 cm, length = 2 m, gas gap = 3 cm
    - 2 digitization schemes to study
      - 1st Digitization scheme: Readout will be a Z- $\phi$  strips placed on the outside of the MPGD cylinder
        - $\triangleright$  Z and  $\phi$  resolutions should be adjustable
          - Nominal resolutions:  $100 \mu m$
      - 2<sup>nd</sup> Digitization scheme: Readout will be a U-V strips placed on the outside of the MPGD cylinder
        - $\triangleright$  U and V strips have pitches of 400  $\mu$ m, and angle between them is 90° (oriented 45° wrt detector sides) (should be easily adjustable)
        - $\triangleright$  U strip width = 80  $\mu$ m, V strip width = 340  $\mu$ m (should be easily adjustable)
          - Nominal resolutions:  $100 \mu m$
    - Mini-drift mode:
      - Cylindrical MPGD will operate as a mini-TPC with drift gap around 1-5 cm. This should be adjustable.
      - Several hit points within the gas gap. How many?
        - > Hit points and resolution vary with track angle entering the detector. How to implement?
        - Can these hit points be fit and form tracklets and obtain a track pointing vector?
      - Will provide directional information for DIRC











