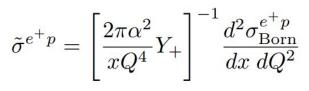
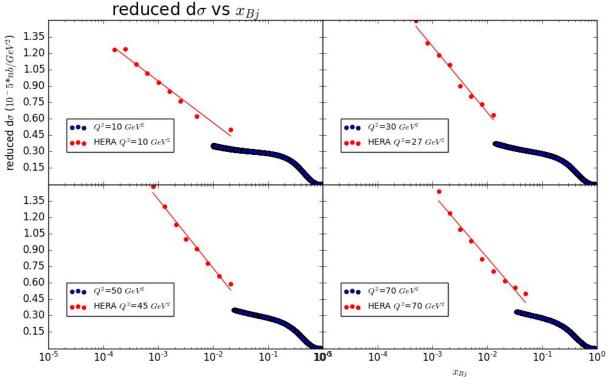
EIC meson structure March 5th, 2020

Richard Trotta, Yulia Furletova, Stephen Kay, Cynthia Keppel, Rolf Ent, Tim Hobbs, Tanja Horn, Dmitry Romanov, Arun Tadepalli, Rik Yoshida, and the meson structure working group

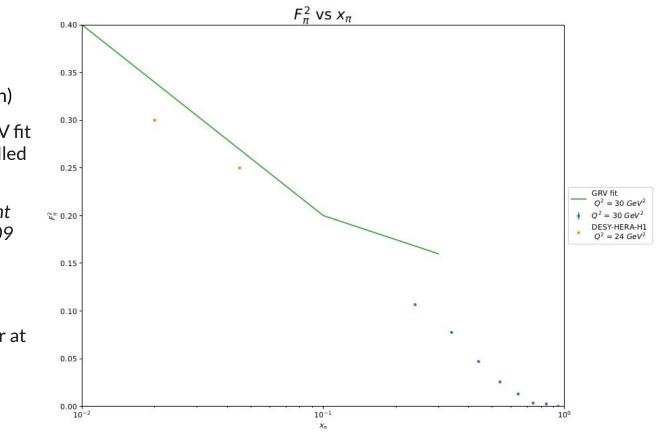
Pion and Kaon Structure White Paper


- In EPJA...
 - Geometric acceptance standard Pythia and accept forward particles
 - Can now do real detection
- But need to find how to distinguish decay products? (e.g. lambda)

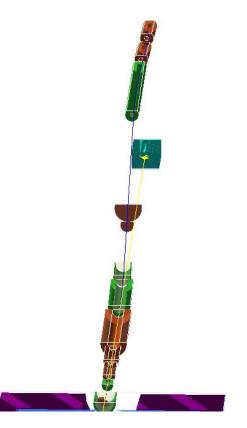

Structure functions

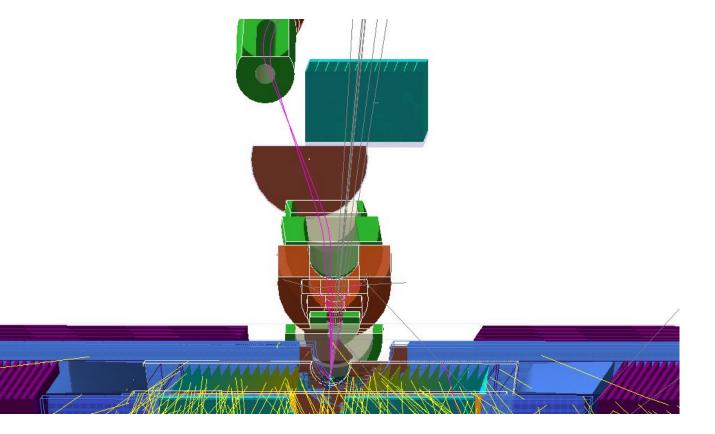
- For projections use a Fast Monte Carlo that includes the Sullivan Process
 - PDFs, form factor, fragmentation function projections
- Progress with generator development since EPJA article:
 - fixes made in generator to remove fixed-target leftovers
 - now can make pion structure function (pion SF) projections
- Current final states: pi/p, pi/n, k/
- Beam energies: 18 on 275, 10 on 100, 5 on 41

Validation: Reduced cross section compared with HERA


- HERA data from ZEUS collab, Eur. Phys. J. C 21 (2001)
- Proton beam = 100 GeV/c
- Electron beam = 5 GeV/c
- x_{Bj}=(0.01-1.0)
- Q²=(10-100)

Validation: $F2\pi$ with GRV fit/DESY-HERA-H1 data [Q²= 30(30/24) GeV]


- F2π = (0.461)*F2P
 - (ZEUS Parameterization)
- DESY-HERA-H1 data and GRV fit (for three points) were eyeballed from plots
 - J. Lan et. al., arXiv preprint (2019) arXiv:1907.01509
- HERA F2pi data appear to be consistent with the MC projections though the x-dependence seems stronger at higher x


GEANT4 for EIC

- Meson structure MC outputs lund files for use in GEANT4
- Detector MC updated with eRHIC specifics (crossing angle changes primarily)
- Updating electron beam line
 - Solenoid centered at zero this cannot be changed as it affects the beamline
 - IR region was the same size for JLEIC and eRHIC design, so can use JLEIC detector in eRHIC beam line.
 - Modulo beam line required changes in end caps, crossing angles


е+р->*π*+р+е'

GEANT4 for EIC

- For neutron final state use ZDC -> need to know detection fractions, for Lambda/Sigma need in addition detection of particle
- Have the beamline CAD generally looks similar to JLEIC
- Currently only have Roman Pots in forward region ok for DVCS, but need more detectors for meson structure measurements
- General approach: put virtual detectors at different z-locations in between the magnets based on this determine what space is needed for these additional detectors

Conclusion and Outlook

- Make Analyzer plugin for physics variables including smearing
- Implement virtual detectors and determine detection fractions
- First rough projection of detection fraction
- Determine where detectors should go
- Come up with a method to distinguish decay products, e.g. \Box and Σ
- Currently have π with proton and neutron final states and K with \Box
- Check that detection fractions are included
- More updates and details in upcoming talk at TEMPLE