Machine learning based jet $p_{\rm T}$ reconstruction in ALICE

June 16th, Nuclear Physics Seminar at BNL (Remote) Hannah Bossi (Yale University)

Heavy-ion collisions and the QGP

Phase diagram for strongly interacting matter.

At extremely high temperatures and pressures, QCD matter becomes deconfined in a state referred to as the Quark Gluon Plasma (QGP).

Hannah Bossi

Jets in vacuum

High $p_{\rm T}$ partons produced early in the collision fragment and hadronize into a spray of particles called **jets**.

Jet production calculable in pQCD.

Sensitive to a wide range of physics scales.

Hannah Bossi

Jets as a probe of QGP

Use pp as reference where any difference is attributed to in-medium effects.

Hannah Bossi

BNL Nuclear Physics Seminar

High $p_{\rm T}$ parton making up a jet is expected to lose energy through strong interactions with the colored medium.

We call this energy loss **jet** quenching.

As these partons are produced early in collisions, jets are the ideal probe of QGP evolution!

Jet widens due to momentum broadening.

Modification might differ depending on path through the medium.

BNL Nuclear Physics Seminar

Hannah Bossi

Observables of jet quenching

Experimental observables of jet quenching fall into 3 main categories, each probing a difference of the second sec expected jet quenching effect.

- 1. Overall Energy Loss: <u>Suppression of inclusive jet yields</u> (more on this later)
- 2. Modification of the internal structure of the jet. Jet Splittings **Fragmentation Function**

Hannah Bossi

3. Differential energy loss

Correlations of jets with other objects

Jet-hadron

V	nt	
	ΙΙι	
-		

Reconstructing jet $p_{\rm T}$ Reconstruction of inclusive jet $p_{\rm T}$ in heavy-ion collisions is made difficult by the large fluctuating background from the underlying event.

- Fluctuations can be on the order of jet itself \rightarrow hard to distinguish energy from the jet.
- Sometimes, upward fluctuations are reconstructed as jets creating "fake jets".

Even by eye, subleading jet hard to find!!

event-averaged momentum density.

Hannah Bossi

BNL Nuclear Physics Seminar

3. Correct for residual fluctuations via unfolding

Nuclear Modification Factor: R_{AA} We measure the suppression of jet yields by the nuclear modification factor ($R_{\Delta \Delta}$).

Hannah Bossi

Ratio of yield in Pb—Pb to the expected yield if no hot or dense medium was present.

<u>Old</u>: Suppression is a signature of QGP formation.

<u>New:</u> Use measurements of suppression to further understand QGP medium.

8

Measurements of inclusive jet K_{AA}

Hannah Bossi

Where are we now in ALICE?

Prevented from going lower by large fake jet contribution at these low jet $p_{\rm T}$ s!

Hannah Bossi

BNL Nuclear Physics Seminar

(area based method)

Pushing to low p_{T} and large R

Hannah Bossi

- Many differential measurements of nuclear modification separate out energy loss effects. Momentum broadening causes energy to be lost outside of the jet cone $\rightarrow R_{AA}$
 - Recover energy deposited in the medium $\rightarrow R_{AA}$
 - Recoiling medium adds energy to jet cone $\rightarrow R_{AA}$
 - Wider jets have more complex structure, which could experience more quenching $\rightarrow R_{AA}$
 - Different jets with different structure experience these effects differently
 - \rightarrow measure dependence of R_{AA} on $p_T \underline{and} R!$
 - Remember: Low $p_{\rm T}$ and large R are difficult regions to study with inclusive jet probes.

11

What does theory say?

 R_{AA} decreases with $R \rightarrow$ as R increases, effect of out-of-cone energy loss and quenching of complex internal structure increases!

What do other models say?

Hannah Bossi

becomes stronger!

Hannah Bossi

What does experiment say?

CMS: High $p_{\rm T}$, Large *R*, Full Jets

Want to see low $p_{\rm T}$ as well, what could ALICE do?

Hannah Bossi

BNL Nuclear Physics Seminar

CMS goes to high $p_{\rm T}$

Now measure up to R = 1.0!

Small increase in R_{AA} with increasing R observed.

Looking at R-dependence is a good way to distinguish models!

<u>CMS-PAS-HIN-18-014</u>

HP Talk by Christopher McGinn

Hannah Bossi

- ALICE has the ability to measure at low $p_{\rm T}$, limited by background subtraction.
- Current mapping from $p_{T,raw} \rightarrow p_{T,rec}$ ignores
 - \rightarrow any fluctuations in the background
 - \rightarrow neutral part could fluctuate differently
 - \rightarrow background is uncorrelated with jet signal
- Ideal mapping from $p_{T,raw} \rightarrow p_{T,rec}$ would be complex and would differ for each jet
 - \rightarrow difficult to derive from expert knowledge

Could machine learning help?

(Brief) intro to machine learning

Machine improves performance by learning from experience, while being robust to obstacles.

Two different types of tasks

1. Classification: group objects in predefined classes.

Ex: Classifying dogs vs. bagels

Hannah Bossi

BNL Nuclear Physics Seminar

2. **Regression:** Assign a predicted value to each sample.

Ex: Predicting stock market prices

16

(Brief) intro to machine learning

Two different types of learning

1. <u>Supervised Learning:</u> algorithm learns from a labeled set with the "true values".

Ex: Distinguishing QCD jets and W jets with jet images

Hannah Bossi

2. Unsupervised Learning: algorithm finds structure in data without knowing the desired outcome.

Ex: Jet Clustering Algorithms

(Brief) intro to machine learning Words of caution!

Put garbage in, get garbage out

→Choices for input variables should be intentional, ML can't replace domain knowledge

 \rightarrow Avoid correlated variables in training.

 \rightarrow Keep model simple, prevents overfitting.

Hannah Bossi

BNL Nuclear Physics Seminar

Don't want to be finding cloudy days when you should be finding tanks!

Machine learning background estimator Use machine learning (ML) to create a mapping to correct the jet for the background!

Jet Properties ML (Including constituent properties)

Does this method reduce residual fluctuations, allowing the measurement to be pushed to lower $p_{\rm T}$ with reduced systematic uncertainties?

Does using constituent information in training introduce a fragmentation bias?

<u>R.Haake, C. Loizides Phys. Rev. C 99, 064904 (2019)</u>

Hannah Bossi

BNL Nuclear Physics Seminar

Corrected Jet $p_{\rm T}$

Unfold for fluctuations and detector effects

Key is that this background is *realistic*.

Hannah Bossi

BNL Nuclear Physics Seminar

Testing

Apply ML estimator to hybrid events not used in training.

20

ML for this analysis

<u>Regression task</u> where the regression target is the detector level jet $p_{\rm T}$.

<u>Supervised learning</u>, we provide the PYTHIA true $p_{\rm T}$ in training.

Training sample 10%, testing sample 90%.

Implemented in scikit-learn. Default parameters used unless otherwise specified.

Shallow Neural Network Shallow, 3 layers with

[100, 100, 50] nodes

ADAM optimizer, stochastic gradient descent algorithm.

Nodes/neurons activated by a **ReLU** activation function.

Hannah Bossi

- **Linear Regression**
- Normalization set to true by default.

Random Forest

Ensemble of 30 decision trees. Maximum number of features set to 15.

Features for training

Feature	Score	Feature	Score
Jet $p_{\rm T}$ (no corr.)	0.1355	$p_{T,const}^1$	0.0012
Jet mass	0.0007	$p_{\rm T.const}^2$	0.0039
Jet Area	0.0005	$p_{\rm T,const}^3$	0.0015
Jet $p_{\rm T}$ (area based corr.)	0.7876	$p_{\rm T,const}^4$	0.0011
LeSub	0.0004	$p_{\rm T,const}^5$	0.0009
Radial moment	0.0005	$p_{\rm T,const}^6$	0.0009
Momentum dispersion	0.0007	$p_{\rm T,const}^7$	0.0008
Number of constituents	0.0008	$p_{\rm T,const}^8$	0.0007
Mean of constituent p_T s	0.0585	$p_{\rm T,const}^9$	0.0006
Median of Constituent p_Ts	0.0023	$p_{\mathrm{T,const}}^{\mathrm{10}}$	0.0007

Iteratively remove unimportant or highly correlated features, we are prioritizing a simple model!

<u>R.Haake, C. Loizides Phys. Rev. C 99, 064904 (2019)</u>

Hannah Bossi

BNL Nuclear Physics Seminar

Ask ourselves two questions before selecting a feature:

- 1. How important is the feature
- to the model? \rightarrow Feature Scores

2. How correlated is the feature with other features?

Features for training

Final List: Prioritizing a simple model!

Jet $p_{\rm T}$ (area-based corrected)

Number of Constituents within Jet

Jet Angularity

 $p_{\rm T}$ of 8 Leading Constituents

R.Haake, C. Loizides Phys. Rev. C 99, 064904 (2019)

Hannah Bossi

BNL Nuclear Physics Seminar

Ask ourselves two questions before selecting a feature:

1. How important is the feature to the model? \rightarrow Feature Scores

2. How correlated is the feature with other features?

Charged vs. full jets

Today we will show charged and full jet results! Charged particle jets \rightarrow contain the charged component of the jet \rightarrow measured with tracking detectors

Full jets \rightarrow contain charged and neutral components of the jet \rightarrow measured with electromagnetic calorimeter \rightarrow limited to fiducial phi acceptance

Full jets show greater alignment with the traditional definition of a jet.

Experimentally challenging as we are using constituents from two different detector components.

Charged Tracks

MANNA MANNER

BNL Nuclear Physics Seminar

Calorimeter Towers

Features for training

Final List: Prioritizing a simple model!

Jet $p_{\rm T}$ (area-based corrected)

Number of Constituents within Jet

Jet Angularity

 $p_{\rm T}$ of 12 Leading Constituents

For full jets we need more constituents in training to reflect increase in constituents in the jet. Constituents are now both charged and neutral.

<u>R.Haake, C. Loizides Phys. Rev. C 99, 064904 (2019)</u>

Hannah Bossi

BNL Nuclear Physics Seminar

Ask ourselves two questions before selecting a feature:

1. How important is the feature to the model? \rightarrow Feature Scores

2. How correlated is the feature with other features?

Evaluating the performance $\delta p_{\rm T} = p_{\rm T,rec} - p_{\rm T,true}$

PYTHIA detector level jet)?

Residual fluctuations significantly reduced!

Evaluating the performance $\delta p_{\rm T} = p_{\rm T,rec} - p_{\rm T,true}$

PYTHIA detector level jet)?

Hannah Bossi

Results - inclusive jet spectra

Able to extend measurements to lower $p_{\rm T}$ and larger *R*!

Hannah Bossi

BNL Nuclear Physics Seminar

0.6

50

Hannah Bossi

ALICE uses a machine learning based background correction.

Able to extend measurements of the R_{AA} to low $p_{\rm T}$ and large *R*.

Advantageous to extend method to full jets!

<u>Phys. Rev. C 99, 064904</u>

<u>HP Talk on ML R_{AA} </u>

Hannah Bossi

Fragmentation bias

Learning on constituents introduces a fragmentation bias.

Hannah Bossi

- We learn on a PYTHIA fragmentation.
- We know that fragmentation in heavy-ion collisions is modified by the presence of the medium.
- We want to investigate how this impacts the final result we get with ML!

Quark vs. Gluons

Investigate fragmentation dependence by checking model performance on jets with different fragmentation.

Quark jets have less constituents with a harder fragmentation \rightarrow narrower.

Gluon jets have more constituents with a more even distribution in energy \rightarrow wider.

See a small bias relative to the inclusive case!

Using JEWEL

Investigate fragmentation dependence by checking model performance on jets with different fragmentation.

Use JEWEL, a quenched MC designed to mimic heavy ion quenching effects.

Vacuum JEWEL ~ PYTHIA (nominal case)

Bias similar to Q/G observed.

Hannah Bossi

Modification to the fragmentation function

Leading 8 particles

Toy model modifications indeed modify the fragmentation, some modifications are more extreme than others.

8 leading particles are what we chose to train on.

Hannah Bossi

BNL Nuclear Physics Seminar

Inclusive particles

- 1. Modify PYTHIA jets
- 2. Apply ML trained on unmodified PYTHIA
- **R**toy 3. Look at AA

Modified Unmodified

Hannah Bossi

Here, we focus on the difference between PYTHIA and Embedded (ML).

Largest difference for the mostly in cone case.

Let's unpack this!

Looking deeper into $R^{toy}_{\Lambda,\Lambda}$

ML has the same target $p_{T,mod}^{PYTHIA} = p_{T,unmod}^{PYTHIA}$

 \rightarrow Whenever energy is lost out of cone $p_{T,mod}^{PYTHIA} \neq p_{T,unmod}^{PYTHIA}$

Every constituent has lost 10% of its energy in cone.

The ML is trained using only leading 8 constituents for the unmodified case, unable to recover energy lost in cone.

 \rightarrow ML is picking up on energy loss, just energy lost in cone.

Would we see similar biases training on the modified toy?

Hannah Bossi

Illustration of potential bias

Train on the modified toy model and apply to data; measure bias.

Method is relatively robust to the explored biases!

Lower $p_{\rm T}$ is a largely unexplored region. Machine learning provides us with an opportunity to study this.

Comparing to models

Keeping previous studies in mind, let's compare to models!

Hannah Bossi

JEWEL: Scattering and radiative energy loss, with/ without recoiling medium. JHEP 1707 (2017) 141

SCETg: Interactions with medium mediated by Glauber gluon exchange. JHEP 07 (2019) 148

Hybrid Model: medium response via wake. AdS/CFT non-pert. regime. Phys. Rev. Lett. 124, 052301

LBT: hydrodynamic medium, jet-medium interactions, recoils. Phys. Rev. C 99 (2019) 054911

Conclusions

- Low $p_{\rm T}$ and large R are less studied regions with inclusive jet probes in HI collisions due to difficulties created by the large fluctuating background from the underlying event.
- These measurements are useful in separating out different energy loss effects.
- We present a novel machine learning based background correction, which allows for the extension to lower p_{T} and larger R than previously possible in ALICE.
- See significant jet suppression down to $p_{\rm T}$ accessible by RHIC.
- We study the fragmentation bias introduced by training the neural network on the constituents from PYTHIA
 - \rightarrow do this using a toy model with three different modifications
 - \rightarrow estimating the effect of these modifications on the R_{AA}

What's next?

BNL Nuclear Physics Seminar

38

Where do we go from here?

Our toy models are only simple tests, how do we get closer to the true case?

 \rightarrow Train on a quenched MC: JEWEL, JETSCAPE, etc.

Compare low $p_{\rm T}$ results with sPHENIX and STAR!

How far can we go in *R* with ALICE?

Charged particle jets: Limited to R = 0.9max from eta acceptance of TPC.

Full jets: Limited to R = 0.7 max from eta acceptance of EMCAL.

Let's see how far we can go!

Hannah Bossi

SPHENIX

There are also many other methods of reconstructing jet $p_{\rm T}$ how do these compare?

Eur. Phys. J. C75 (2) (2015) 59

Phys. Rev. D 100 114023 (2019)

What variables can we use ML for?

Jet mass is a good candidate for ML \rightarrow binned in $p_{\rm T}$!

Next frontier: Could we use ML for substructure??

Hannah Bossi

BNL Nuclear Physics Seminar

20

Already see good performance!

Jet Splittings

Stay tuned! Thanks!

Hannah Bossi

Hannah Bossi

BNL Nuclear Physics Seminar

Backup

Analysis details

Inclusive Pb—Pb jet sample at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ $L \sim 250 \ \mu b^{-1}$ with the ALICE detector in 2015.

anti- $k_{\rm T}$ jets with various resolution parameters R and centralities

Hannah Bossi

- Charged particle jets \rightarrow contain the charged component of the jet \rightarrow measured with tracking detectors
 - Full jets \rightarrow contain charged and neutral components of the jet
 - \rightarrow measured with electromagnetic calorimeter
 - → limited to fiducial phi acceptance

Other Theory Predictions

Hannah Bossi

Hannah Bossi

From Molly Taylor's talk at QM 2019

R dependence from theory: A Summary

BNL Nuclear Physics Seminar

From Molly Taylor's talk at QM 2019

Comparing theory underlying mechanisms With Medium Response Without Medium Response

JEWEL (recoils on): Medium recoil without re-scattering. Hybrid Model: Medium response via wake. CCNU: Medium recoil and back reaction with rescattering.

LBT: Medium recoil

JEWEL (recoils off) SCETg Factorization

BDMPS Toy Model Modification

$P(\theta_{g},\omega) = \alpha \omega \theta_{q}^{3} \sqrt{\frac{2\omega}{\hat{q}}Le^{\frac{-\theta_{q}^{2}\omega^{2}}{\sqrt{2\omega\hat{q}}}}}$

JHEP 0109 (2001) 033

Hannah Bossi

BNL Nuclear Physics Seminar

Modify the constituents of the jet by sampling the BDMPS gluon emission spectrum in the emission angle and energy.

For this study we use values of $\hat{q} = 2$ and L = 7 fm and $p_{10SS} = 1.0$.

Motivation behind this is to emit from a probability distribution dictated by quenching theory.

Hannah Bossi

BNL Nuclear Physics Seminar

Strategy 2: Make R = 1.0 jets using R = 0.2subjets.

Small increase in R_{AA} with respect to R = 0.4.

ATLAS-CONF-2019-056 HP Talk by Anne Sickles