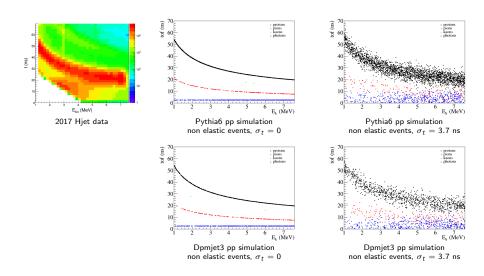


Ana Sofia Nunes (BNL)

April 7, 2020



Introduction

- The EIC will require measurements of hadron polarization with systematic uncertainties at the level of 1%
- The separation between consecutive bunches at the EIC will be 8.9 ns, much shorter than at RHIC (106 ns)
- RHIC uses 3 types of polarimeters to measure the polarization of protons
 - 1 the HJet polarimeter, for absolute but slow values of polarization
 - 2 the pC polarimeters, for relative but fast values of polarization
 - the local polarimeters, after the spin rotators, to check the direction of polarization
- Both the H-Jet and the pC polarimeters use the elastic scattering of protons on p or C in the Coulomb-nuclear interference (CNI) region, for which an azymuthal asymmetry of the recoil particles, proporcional to the polarization, is observed
- The signal events from elastic scattering are mixed with a background that:
 - is not well known
 - could not be eliminated
 - shows a small, but significant, left-right asymmetry

Simulation of current RHIC H-Jet polarimeter

Generated events: 1M, E_{beam} = 255 GeV, w/ detector acceptance cut

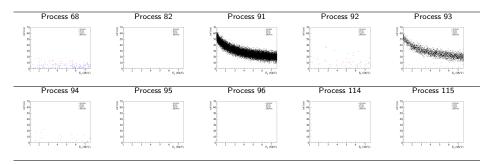
Pythia6, pp RHIC

Generated events: 1M, $E_{
m beam} =$ 255 GeV, w/ detector acceptance cut

PID	Particle	Entries		
-321	κ-	6		
-211	π^-	5697		
-12	$\bar{\nu_e}$	2		
-11	e_	182		
11	e^+	199		
12	ν_{e}	1		
13	μ^-	1		
22	γ	32197		
130	κ_L^0	31		
211	π^+	10339		
321	κ^+	129		
2112	n	21		
2212	р	97255		

ProcessID	Process	Entries
1	$f_i \bar{f}_j \rightarrow \gamma^* / Z^0 \rightarrow F_K \bar{F}_k$	0
2	$f_i \bar{f}_j \to W^+ \to F_k \bar{F}_l$	0
10	$f_i f_j \rightarrow f_k f_l$	0
11	$q_iq_j \rightarrow q_iq_j$	15769
12	$q_i \bar{q_i} \rightarrow q_k \bar{q_k}$	14
13	$q_i \bar{q}_i \rightarrow gg$	31
14	$q_i \bar{q}_i \rightarrow g \gamma$	1
28	$q_i g \rightarrow q_i g$	8949
29	$q_i g \rightarrow q_i \gamma$	0
53	$gg \rightarrow q_k \bar{q_k}$	141
68	gg o gg	8950
82	$gg o Q_k ar{Q_k}$	0
91	elastic scattering	88859
92	single diffraction $(AB \rightarrow XB)$	9791
93	single diffraction $(AB \rightarrow AX)$	8580
94	double diffraction	4974
95	low-p _T production	0
96	semihard QCD 2 $ ightarrow$ 2	0
114	$gg \rightarrow \gamma \gamma$	0
115	$gg o g\gamma$	0

Pythia6, pp RHIC, TOF vs $E_{\rm kin}$ w/ PID


Generated events: 1M, $E_{\rm beam} = 255$ GeV, w/ detector acceptance cut

Process 1	1 Process 2 Process 10 P		Process 11	Process 12		
\$ 30	3 3 3 4 5 6 6 6 6 7 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	\$\frac{2}{3} \text{ (0)} \\ \frac{2}{3} \text{ (0)} \\ \frac{2} \text{ (0)} \\ \frac{2}{3} \text{ (0)} \\ \frac{2} \text{ (0)} \\ \frac{2}{3} \text{ (0)} \\	2 30 3 0 30 40 31 32 33 41 41 41 41 41 41 41 41 41 41	3 30		
Process 13						
Process 13	Process 14	Process 28	Process 29	Process 53		

ProcessID Process
$$\begin{array}{cccc} 1 & f_i\bar{f}_j \rightarrow \gamma^*/Z^0 \rightarrow F_K\bar{F}_k \\ 2 & f_i\bar{f}_j \rightarrow W^+ \rightarrow F_k\bar{F}_l \\ 10 & f_i\bar{f}_j \rightarrow f_kf_l \\ 11 & q_iq_j \rightarrow q_iq_j \\ 12 & q_i\bar{q}_i \rightarrow q_k\bar{q}_k \\ 13 & q_i\bar{q}_i \rightarrow gg \\ 14 & q_i\bar{q}_i \rightarrow g\gamma \\ 28 & q_ig \rightarrow q_ig \\ 29 & q_ig \rightarrow q_i\gamma \\ 53 & gg \rightarrow q_i\bar{q}_k \end{array}$$

Pythia6, pp RHIC, TOF vs $E_{\rm kin}$ w/ PID

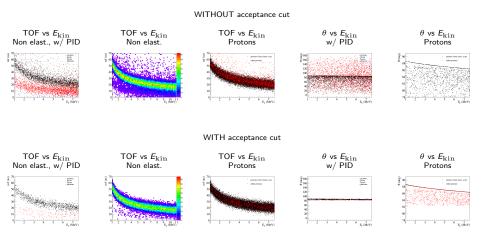
Generated events: 1M, $E_{\rm beam} = 255$ GeV, w/ detector acceptance cut


```
ProcessID
                   Process
                   gg \rightarrow gg
                   gg \rightarrow Q_k \bar{Q_k}
          91
                   elastic scattering
          92
                   single diffraction (AB \rightarrow XB)
          93
                   single diffraction (AB \rightarrow AX)
          94
                   double diffraction
          95
                   low-p<sub>T</sub> production
          96
                   semihard QCD 2 
ightarrow 2
        114
                   gg \rightarrow \gamma \gamma
        115
                   gg \rightarrow g\gamma
```

DPMJet-III, pp RHIC

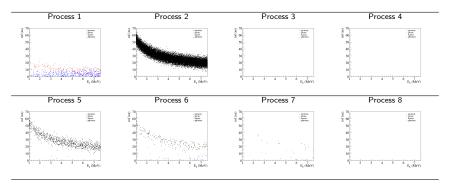
Generated events: 1M, $E_{
m beam} =$ 255 GeV, w/ detector acceptance cut

PID	Particle	Entries
-321	κ-	18
-211	π^-	6236
-11	e ⁻	196
11	e^+	204
22	γ	35668
130	κ_L^0	47
211	π^+	10628
310	K_S^0	48
321	κ^{\mp}	124
2112	n	4
2212	р	89165


ProcessID	Entries
1	46624
2	85443
3	0
4	6
5	3067
6	5498
7	1700
8	0

DPMJET subprocesses in ep/eA

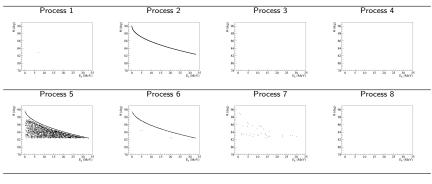
process1	Description
1	non-diffractive inelastic scattering
2	purely elastic scattering
3	quasi-elastic scattering
4	central diffraction (double-pomeron scattering)
5	single diffractive dissociation of particle 1
6	single diffractive dissociation of particle 2
7	double diffractive dissociattion
8	hard direct interactions


DPMJet-III, pp RHIC

Generated events: 1M, $E_{
m beam} =$ 255 GeV, w/ and w/o detector acceptance cut

DPMJet-III, pp RHIC, TOF vs $E_{\rm kin}$ w/ PID

Generated events: 1M, $E_{
m beam} =$ 255 GeV, w/ detector acceptance cut

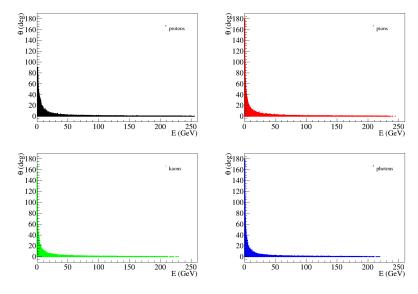


DPMJET subprocesses in ep/eA

process1	Description
1	non-diffractive inelastic scattering
2	purely elastic scattering
3	quasi-elastic scattering
4	central diffraction (double-pomeron scattering)
5	single diffractive dissociation of particle 1
6	single diffractive dissociation of particle 2
7	double diffractive dissociattion
8	hard direct interactions

DPMJet-III, pp RHIC, θ vs $E_{\rm kin}$ protons

Generated events: 1M, $E_{
m beam} =$ 255 GeV, w/ detector acceptance cut



DPMJET subprocesses in ep/eA

process1	Description
1	non-diffractive inelastic scattering
2	purely elastic scattering
3	quasi-elastic scattering
4	central diffraction (double-pomeron scattering)
5	single diffractive dissociation of particle 1
6	single diffractive dissociation of particle 2
7	double diffractive dissociattion
8	hard direct interactions

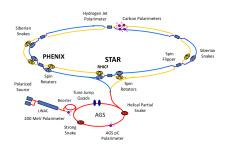
DPMJet-III, pp RHIC, θ vs E w/ PID

Generated events: 1M, $E_{
m beam} =$ 255 GeV, w/o detector acceptance cut

Summary and outlook

Done:

- Simulation of present polarimeters in DPMJet-III started
- Current H-Jet polarimeter data reasonably described by simulations of Pythia6 and DPMJet-III

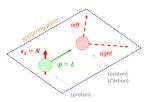

To do:

Simulate in DPMJet-III: dd, hh, dp, hp in RHIC 'H-Jet' polarimeter, pC, pAu, dC, dAu, hC, hAu in RHIC 'Carbon' polarimeters, pC, pAu, dC, dAu, hC, hAu in AGS 'Carbon' polarimeters

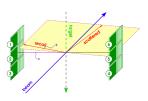
BACKUP

Polarimetry at RHIC

- In contrast to lepton polarimetry, hadron polarimetry doesn't use a physical process that can be calculated from first principles
- Requirements: precision measurements, polarization profile and lifetime to know polarization in collisions in experiments
- A two-tier measurement is needed: one for the absolute polarization (with low statistical power), and one for relative polarization (with high statistical power)
- At RHIC, the absolute polarization is measured with the H-Jet polarimeter, and the relative polarization is measured by 4 proton-carbon polarimeters
- There are also local polarimeters at the experimental interaction regions, to define the spin direction and the degree of rotation in the experimental area

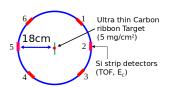

120 bunches (106 ns spacing)
10¹¹ protons per bunch
Store ~ 8 hours

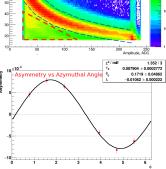
Absolute Polarimeter: the H-Jet


- A polarized proton jet, with known polarization (measured with a Breit-Rabi polarimeter) is used as target for elastic scattering in CNI region by beam
 [→]
 P. Asymmetry: ε = A_NP.
- The analyzing power A_N doesn't have to be known and allows the self-calibration of the polarimeter
- Left-right asymmetries ε are extracted
- Beam polarization given by

$$P_{ ext{beam}} = rac{arepsilon_{ ext{beam}}}{A_{N}} = -rac{arepsilon_{ ext{beam}}}{arepsilon_{ ext{target}}} P_{ ext{target}}$$

- Silicon strips detect the recoil particles
- Pros: provides absolute values of polarization
- Cons: low statistics (because of diffuse target) limits the precision, doesn't allow online monitoring, nor measuring the polarization transverse and longitudinal profile, nor measuring the polarization lifetime, only per fill measurements

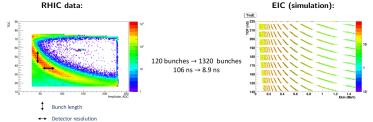




Fast and Precise Polarimeter: the pC Polarimeter

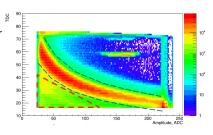
- Non-polarized, ultra-thin carbon ribbon $(w=10~\mu\mathrm{m})$, used as target for elastic scattering in the CNI region by beam $\stackrel{\rightarrow}{p}$
- ullet Azimuthal asymmetries $arepsilon(\phi)$ measured
- A_N from normalization to the H-Jet; dependence with energy agrees well with models $_{\S}$
- Beam polarization: $P_b = \frac{\varepsilon(\phi)}{A_N \cdot \sin(\phi)}$
- Silicon strips detect the recoil particles, measurements of 20-30 s in target scan mode
- Pros: the high statistics allows precise measurements (statistical precision 2-3%), online monitoring, measurement of the polarization transverse and longitudinal profile, polarization lifetime, and fill by fill polarization
- Cons: stability of targets, calibration of Si detectors every year

TOF vs Recoil kinetic energy

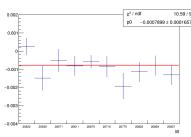

EIC Hadron Polarimetry

Requirements:

- Large polarization, long. and transv., flexible bunch polarization orientation
- ullet Small uncertainty in polarization measurement: ${\sim}1\%$
- Bunch polarization profile in x, y and z, polarization lifetime
- Polarization per bunch (2 detectors, not all bunches collide at a given IP)


Challenges:

- Short spacing between bunches
- Background to the signal events may contaminate preceeding bunch
- Luminosity measurement may depend on the polarization: $\sigma_{\rm Brems.} = \sigma_0 (1 + a P_e P_h)$
- Pioneering light ion beam polarization measurements at high energies



Polarized Proton Beams

- Problems: background to the elastic scattering events "banana" from triangular region in plot, "prompts" from the following bunch
- Ideas for improvements: second layer of silicon detectors can be installed in the polarimeters to veto prompts (to be tested in 2021 in pC and H-Jet polarimeters)
- Other materials could be used for more stable nuclear targets
- Silicon detectors and associated electronics (now: wave form digitizers) polarimeters can be upgraded to get better timing resolution

Background asymmetry, 10 measurements of RHIC pC polarimeters in 2017:

EIC parameter table

CHAPTER 3. ERHIC DESIGN

 $\textbf{Table 3.3:} \ eRHIC \ beam \ parameters \ for \ different \ center-of-mass \ energies \ \sqrt{s}, with \ strong \ hadron \ cooling. \ High \ divergence \ configuration$

Species	proton	electron 18		electron 10	proton 100	electron 10		electron 5	proton 41	electron 5
Energy [GeV]	275		275				100	-		-
CM energy [GeV]	140.7		104.9		63.2		44.7		28.6	
Bunch intensity [1010]	20.5	6.2	6.9	17.2	6.9	17.2	4.7	17.2	2.6	13.3
No. of bunches	25	90	1160		1160		1160		1160	
Beam current [A]	0.74	0.227	1	2.5	1	2.5	0.68	2.5	0.38	1.93
RMS norm. emit., h/v [µm]	4.6/0.75	845/72	2.8/0.45	391/24	4.0/0.22	391/25	2.7/0.27	196/20	1.9/0.45	196/34
RMS emittance, h/v [nm]	16/2.6	24/2.0	9.6/1.5	20/1.2	37/2.1	20/1.3	25/2.6	20/2.0	44/10	20/3.5
β*, h/v [cm]]	90/4.0	59/5.0	90/4.0	43/5.0	90/4.0	167/6.4	90/4.0	113/5.0	90/7.1	196/21.0
IP RMS beam size, h/v [µm]	119/10		93/7.8		183/9.1		150/10		198/27	
K_x	11	1.8	1:	1.9	20.0		14.9		7.3	
RMS $\Delta\theta$, h/v [μ rad]	132/253	202/202	103/195	215/156	203/227	109/143	167/253	133/202	220/380	101/129
BB parameter, h/v [10 ⁻³]	3/2	100/100	14/7	73/100	10/9	75/57	15/10	100/66	15/9	53/42
RMS long. emittance [10 ⁻³ , eV-sec]	36		36		21		21		11	
RMS bunch length [cm]	6	0.9	6	2	7	2	7	2	7.5	2
RMS $\Delta p / p [10^{-4}]$	6.8	10.9	6.8	5.8	9.7	5.8	9.7	6.8	10.3	6.8
Max. space charge	0.006	neglig.	0.003	neglig.	0.028	neglig.	0.019	neglig.	0.05	neglig.
Piwinski angle [rad]	5.6	0.8	7.1	2.4	4.2	1.2	5.1	1.5	4.2	1.1
Long. IBS time [h]	2.1		3.4		2		2.6		3.8	
Transv. IBS time [h]	2		2		2.3/2.4		2/4.8		3.4/2.1	
Hourglass factor H	0.86		0.86		0.85		0.83		0.93	
Luminosity [1033cm-2sec-1]	1.	65	10	.05	4.	35	3.	16	0.	.44

Interaction of photons with matter (carbon and lead)

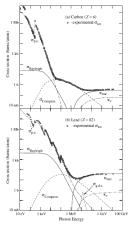


Figure 33.15: Photon total cross sections as a function of energy in carbon and lead, showing the contributions of different processes [50]:

 $\sigma_{\text{p.e.}}$ = Atomic photoelectric effect (electron ejection, photon absorption) σ_{Rayleigh} = Rayleigh (coherent) scattering-atom neither ionized nor excited

 $\sigma_{\text{Compton}} = \text{Incoherent scattering (Compton scattering off an electron)}$

 $\kappa_{\text{nuc}} = \text{Pair production, nuclear field}$

 κ_e = Pair production, electron field

 $\sigma_{\rm g.d.r.}$ = Photonuclear interactions, most notably the Giant Dipole Resonance [51]. In these interactions, the target nucleus is usually broken up.

Original figures through the courtesy of John H. Hubbell (NIST).