

Event Reconstruction for High Precision Neutrino Physics in LArTPCs

Hanyu WEI

Physics Department

Apr. 7th, 2020 @ Home (ZOOM)

Neutrinos come in a wide variety of energies & physics!

Neutrino Detection

- Scintillator + PMT -- Cowan-Reines experiment in 1956, first detection of neutrinos (reactor neutrinos)
- Spark chamber (segmented) L. Lederman, *et al.* experiment in 1962, the discovery of v_{μ} (first measurement of accelerator neutrinos)
- Radiochemical reaction (counter) -- R. Davis's experiment in 1967, (first measurement of solar neutrinos)

JUNO Scint. + PMT

Large sampling (segmented scintillator)

First *Image* of Neutrino Interaction – Bubble chamber

Bubble chamber: Gargamelle -- discovery of neutral current Nuclear emulsion: DONUT, OPERTA -- discovery of v_{τ}

Neutrino Detectors

- o Massive (only weak interactions)
- Calorimeter
- Topology
- *Massive* + *Calorimeter* + *Topology? powerful particle identification*

Liquid Argon (LAr) Calorimeter

 During 1972-1974, Bill Willis (Yale) and Veljko Radeka (BNL) designed and built the first LAr sampling electromagnetic calorimeter (200 1.5 mm plates + 2 mm LAr gaps)

Electronics readout Integral system design

LIQUID-ARGON IONIZATION CHAMBERS AS TOTAL-ABSORPTION DETECTORS*

W. J. WILLIS[†]

Department of Physics, Yale University, New Haven, Connecticut 06520, U.S.A.

and

V. RADEKA

Instrumentation Division, Brookhaven National Laboratory, Upton, New York 11973, U.S.A.

Received 14 May 1974

→ CERN Intersecting Storage Rings (ISR)
→ ATLAS

ATLAS Lar Calorimeter System

Time Projection Chamber (TPC)

 In 1974, David Nygren (LBNL) proposed a novel concept of TPC in a LBL internal report "Proposal to Investigate the Feasibility of a Novel Concept in Particle Detection"

LAr + TPC

"There has been a growing need for novel device which combines the large amount of specific information on the topology of the events of a bubble chamber with the much larger mass, timing, and geometrical flexibility of a counter experiments" – C. Rubbia

A NEUTRINO DETECTOR SENSITIVE TO RARE PROCESSES 1. A STUDY OF NEUTRINO ELECTRON REACTIONS	
H. H. Chen, P. E. Condon University of California Irvine, California 92717 B. C. Barish, F. J. Sciulli California Institute of Technology Pasadena, California 91109	1977 Carlo Rubbia CERN internal report THE LIQUID-ARGON TIME PROJECTION CHAMBER: A NEW CONCEPT FOR NEUTRINO DETECTORS
1976 Herbert Chen FNAL proposal 496	C. Rubbia

A typical LArTPC design (single-phase)

50 years: from Bubble chamber to LArTPC

Gargamelle (1973): discovery of weak neutral current $[\nu_\mu {\rm e}^- \rightarrow \nu_\mu {\rm e}^-]$

Fun facts: CBrF₃ (bubble chamber liquid) is very similar to LAr in many aspects, e.g. density, dE/dx, radiation length, absorption length, etc.

MicroBooNE (2016): probably a neutral current interaction of v_{μ} Full time electronics readout (cold ASIC)

LArTPC detectors

Neutrino Oscillation

Neutrino flavor eigenstate = mixture of mass eigenstates

Known unknowns:

 θ_{23} octant Dirac CP phase Mass ordering

Unknown unknowns:

Majorana particle? Sterile neutrino (>3 flavor)? Beyond standard model?

Short-Baseline Neutrino Program

ICARUS T-600, 760 ton moved to Fermi 2017

MicroBooNE is the first detector taking data in SBN program. MicroBooNE 170 ton SBND 112 ton 2015-110 m 600 m \mathbf{m} SBN Near Detector Short-Baseline Neutrino Program

Neutrino Beam.

Three detectors (LArTPCs) to perform sensitive searches for

 ν_e appearance and ν_μ disappearance in the Booster

Negligible ν_e appearance ($\nu_\mu \rightarrow \nu_e$ oscillation) in 3 active neutrino scenario

Physics of Short-Baseline Neutrino Program

Negligible ν_e appearance ($\nu_\mu \rightarrow \nu_e$ oscillation) in 3 active neutrino scenario

Other explanations of Low Energy Excess

Other models except 3+1 sterile:

- Single-photon production via resonance $\Delta \rightarrow N\gamma$
- Dark neutrino portal $Z_D \rightarrow e^+e^-$
- Heavy sterile neutrino radiative decay $v_h \rightarrow v\gamma$
- \circ Misidentification of π^0 decay γ
- Single-photon (γ) background in the dirt and material surrounding the detector

 e/γ (or e^+e^-) discrimination is the key.

Select References:

Annu. Rev. Nucl. Part. Sci. 69 (2019) CERN-TH-2019-152, arXiv: 1909.08571 IPPP/19/19 arXiv:1903.07589 Phys. Rev. Lett. 121, 241801 (2018) J. Phys.: Conf. Ser. 1056 012001 (2018) Phys. Rev. Lett. 103, 241802 (2009)

Deep Underground Neutrino Experiment

The Deep Underground Neutrino Experiment (DUNE)

Neutrino Oscillation Physics of DUNE

More discussions later about DUNE physics!

Detector + ? = Physics (Hardware + ? = Miracle)

Software (Event Reconstruction) -- game changer!

SJ: "Apple is fundamentally a software company."

BG: "Well, Steve and I worked together, creating the Mac. We [Microsoft] had more people on it, did the key software for it."

LArTPC Event Reconstruction

- Inverse problem: deconvolution of detector response
- Event reconstruction is critical in realizing the full scientific capability of LArTPCs
- Full of challenges and an open problem at many fundamental aspects

experiments

Use MicroBooNE as an example Focus on *Wire-Cell* reconstruction chain

Physics analysis challenges

With great power comes great responsibility complex response. Lack of understanding of real detector (data)

Calibration

General strategy: correction to adjust MC to DATA! Always introduce unclear & incoherent impacts on different analyses.

 $MC \neq DATA$

Low efficiency & complicated systematics.

Need:

Robust Event Reconstruction (deconvolve

- detector response)
- ightarrow Highly rely on data
- \rightarrow Benefit both Monte-Carlo and calibration

 e/γ (or e^+e^-) discrimination

An *e* bremsstrahlung every few cm in LAr --> electromagnetic shower

LArTPC 3D reconstruction

2D projection has very limited capability to do physics. The real physics is "visible" in a reliable 3D reconstruction.

Color scale: charge (ionization electrons)

• 3D reconstruction is the key to maximize the potential of LArTPC.

Isn't this straightforward since LArTPC is a 3D imaging detector?

Challenges of LArTPC 3D Reconstruction

TPC: 2D image + 1D drift LArTPC (typical single-phase):

- Integrated charge along the wire \rightarrow THREE wire planes $(3 \times n) \neq 2D$ pixel readout (n^2)
- Unknown vertex, EM showers, etc. in LAr

26

Philosophy of LArTPC 3D Reconstruction

Charge extraction (raw waveform to number of ionization electrons)

2D pattern recognition on each time vs. wire measurement

Tomography

2D image on each time slice, topology-agnostic (only charge, geometry information)

3D image (time)

Three

views

3D pattern recognition on 3D images

No heuristic assumptions in 3D imaging (no information condense/loss) prior to 3D pattern recognition.

Pattern recognition: vertex finding, particle-level clustering, track/shower identification, trajectory fitting, dQ/dx fitting, etc.

time

Matching 2D patterns into a 3D object

Wire-Cell 3D imaging

JINST 13 P05032, C. Zhang, X. Qian, B. Viren, and M. Diwan

Strictly follows the tomography philosophy

Hit cells (merged if connected) from fired wires

A **time** slice on each wire plane measurement Use two planes for illustration

Grey lines: wires

Relate charge along wires to the charge (to be solved) on possible hits

(charge, geometry)

Under-determined linear system (equations)o more unknowns than knowns

Incomplete or inaccurate measurement

Method of exhaustion? NP-hard ...

Wire-Cell 3D Imaging

- <u>Compresses sensing technique (L1-regularization)</u> is used to *rapidly* & *reliably* remove the fake hits, but it is not magic and just to approximate the "best" solutions considering the fundamental equation, charge uncertainty, *sparsity*, etc.
- Other realistic issues have to be addressed: nonfunctional wires/channels, gaps in charge measurement, clustering of space points for each individual TPC activity

TPC/charge-PMT/light Matching

MicroBooNE is operating near the surface (5.5 kHz cosmic-ray muons) TPC readout 4.8 ms; beam spill within 1.6 us 1 neutrino interaction in TPC active volume per ~700 beam spills

Neutrino : Cosmic = 1 : 20k (object level) = 1 : 200 (in-beam PMT flash found)

PMT flash (within 100 ns) for a TPC activity Circle size = PE

32 PMTs in back of anode plane

All possible (PMT, TPC) pairs go through this procedure to find the most compatible ones

- ONE cluster to at most ONE flash
- ONE flash to >=0 clusters (to solve underclustering issues)

Under-determined system: compressed sensing technique

Without <u>3D image</u> and <u>proper</u> <u>clustering</u>, such many-to-many matching cannot be done!

Examples of matching results

Red box: TPC drift window with t0 (provided by PMT flash) correction

Selected in-beam neutrino candidate

Neutrino : Cosmic = 1 : 20k (object level) = 1 : 200 (in-beam PMT flash found) = 1 : 5 (matched to in-beam PMT flash)

~3% neutrino-like cosmic-induced

~17% neutrino

In-beam coincidence cosmic rejection

Through-going cosmic muon -- relatively straightforward, but requires knowledge of distorted TPC boundary [space charge effect]

Stopped cosmic muon (incoming particle) – directionality ← dQ/dx Bragg peak

dQ/dx =

(1) 3D trajectory fitting [charge-weighted center]Advanced 3D operations and graph theory algorithms on 3D

cluster (point cloud) (2) associate ΔQ to $\Delta \vec{x}$ Good knowledge of charge smearing in drift & offline processing

Neutrino candidates after cosmic rejection

Scaled to 5E19 POT

 ν_{μ} NC efficiency: 36%

 v_{e} CC efficiency: 86%

Neutrino : Cosmic = 1 : 0.16

(1:5 before in-beam cosmic rejection)

MicroBooNE 2019 PRL numuCC inclusive Neutrino : Cosmic = 1 : 1 and efficiency ~60%

3D image of selected neutrino activity

Pattern Recognition Strategy

MicroBooNE Deep Learning ν_{μ} CC selection

PATH A

PATH B

Drastically reduced cosmic background (magenta)! Considerably improved selection efficiency!

2D pattern recognition – Deep Learning

- In particular, Convolutional Neural Networks (CNNs)
- Scalable technique, generalizable to various tasks
- Superb performance on image data analysis
- Robust MC for training purpose

Neutrino image and particle-level segmentation Track/shower identification Multiple particle identification (regression)

2D pattern recognition -- Pandora

- Traditional reconstruction algorithms
- Sophisticated pattern recognition software
- Neutrino vertexing, particle-level clustering, track/shower identification, particle flow

Wire-Cell 3D pattern recognition current status

From X. Qian

A neutrino candidate from MicroBooNE data Complex topology

Traditional approaches so far, stay tuned!

 ν_e Selection Strategy

- 1) Track/shower separation
- 2) No gap
- 3) MIP dQ/dx within shower stem

On-going efforts. Goal: S:B = 10 : 1

Last but not least

A good example to demonstrate the importance of fundamental event reconstruction

Impact on high-level reconstruction

Protons Reconstructed as tracks

Red: 2D kernel (simulation, signal processing)

✓ Better MC/data agreement ✓ High proton track eff. At low energy Proton ~10 cm (~0.1 GeV) MicroBooNE Data Wire-Cell Reconstruction e- shower sho or ν_e CCQE DIS

- Neutrino energy reconstruction
- Topology information
- Cross section measurements

Summary: Wire-Cell reconstruction chain

- Signal Processing
- 3D imaging & clustering
- Many-to-many TPC-PMT matching
- In-beam cosmic rejection
- 3D pattern recognition
 - Neutrino vertexing
 - Particle-level clustering
 - Trajectory & dQ/dx fitting
 - Track/shower identification
- Energy & kinematics reconstruction (not covered in this talk)

Summary: what we learned

- Never take for granted \rightarrow excess noise, 2D signal processing
- Expand your vision and be creative \rightarrow Wire-Cell 3D imaging & matching
- Be brave \rightarrow 3D trajectory fitting and dQ/dx fitting
- Professional software → Time & mem optimization, architecture & framework, integration, etc. [B. Viren]
- To be continued ...
- Something really challenging → new detector design (vertical drift, number of wire planes, pixel readout, ...)
 - Prolonged track \rightarrow bipolar signal cancellation (further improvement using deep learning, H. Yu, etc.)
 - Isochronous track \rightarrow large hit multiplicity in a time slice maximizing the wire readout ambiguity
 - Nonfunctional (dead, too noisy, abnormal response) wires → missing vertex, gaps, ghost tracks, large dQ/dx uncertainties

Discussions on DUNE physics

DUNE Neutrino Oscillation Physics

- Flux uncertainty
- Cross section uncertainty
- Detector uncertainty

DUNE Neutrino Oscillation Physics

Where LArTPC event reconstruction can play an important role

How to accurately reconstruct Argon 39 (low energy) and neutron (low visible & separate) events?

- Flux uncertainty: low energy transfer method
 - Cross section independent on Enu
 - neutrino-Hydrogen, neutrino-electron scattering
- Detection response: cross section + detector effect: DUNE-PRISM
 - Measurements at various off-axis positions in a near LArTPC detector (ArgonCube) → predict far detector unoscillated energy spectrum
 - Near detector flux \rightarrow far detector flux?
- Detector effect uncertainties: calibration
 - Argon 39, neutron source, etc.

DUNE nucleon decay physics

Kaon decay candidate in the ICARUS T600 LArTPC observed in the CNGS data

Thanks for your attention!

- Event reconstruction is fundamental
- Interplay with the understanding of detector → realistic simulation, high performance physics analysis, reliable calibration, new detector technology
- LArTPC event reconstruction is an open question and needs more attention and efforts.

My work

MicroBooNE

- Simulation group co-convener
- Reconstruction group co-convener
- Validation, evaluation, and optimization of Wire-Cell event reconstruction techniques.
- Wire-Cell software integration & large-scale production
- Generic neutrino selection analyses
- Signal processing paper
- Imaging/matching paper preparation [JINST]
- Generic neutrino selection (cosmic rejection) paper preparation [PRD/PRL]

DUNE cold electronics

Additional Slides

What we don't know?

Space charge boundary

Y (cm)

2000

eLEE nue efficiency

55

eLEE nue efficiency

Selected intrinsic nue + eLEE

Last but not least

(long-range static electric field response)

Merits of advanced signal processing

• Significantly improved signal processing for induction wire planes

Consistent reconstructed charge across all three wire planes

Deep learning electron/gamma separation in 1e1p sample

Topology-dependent waveforms **SIMULATION**!

3D image of selected neutrino activity

Such an efficient method to reconstruct clean & intact 3D images of neutrino activities has never been demonstrated before (at least in MicroBooNE)

Low visible energy

events are challenging!

Events have neutrino interactions in TPC active volume

TPC/charge-PMT/light Matching

Compressed sensing (L1-regularized minimization)

A signal processing technique for efficiently reconstructing <u>sparse</u> signal, by finding solutions to <u>underdetermined linear systems</u>

E.g. tomography with sparse projections

- available portion of the spectrum (11 radial lines)
- Back-projection estimate

Estimate after convergence (exact reconstruction)

Enabled by the **sparse** LArTPC activities Also incorporate **positivity** *(ionization charge only drift towards wire plane – positive charge value)* and **proximity (***continuous energy depos***)**

L1-regularization (hours to mins for a MicroBooNE event)

✓ Minimize $\chi^2 = (y - Ax)^2 + \lambda ||x||_1$, L1-norm is the sum of the absolute value of each element of vector x

Convex, local minimum = global minimum [fast algorithms]

DUNE Neutrino Oscillation Physics

DUNE TDR

The median (central) value of these sensitivity curves highly rely on the detection efficiency of $v_e(\bar{v}_e)$

This is a challenging event reconstruction task as shown in MicroBooNE.

