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Fermilab
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Introduction to Neutrino Oscillations 

Sanford Underground 
Research FacilityFermilab

e π0

Low Energy Excess νe appearance Anomaly 
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⌫E  Reconstruction: Interaction Modeling 

⌫
Eν = ΣΕoutgoing particles
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E  Reco Requires Interaction Modeling ⌫

El - El’
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E  Reco Requires Interaction Modeling ⌫

Deep Inelastic Scattering

Meson Exchange
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Neutrino event generators are used to simulate a νA interaction 

Among those:  
 

and more

νA Interaction Modelling 
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Nuclear Uncertainties are significant
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Nuclear Uncertainties are significant

Ph
ys

. 
Re

v.
 D

 8
9,

 0
73

01
5 

(2
01

4)

GENIE

GiBUUCould lead to wrong 
extraction of the 

mixing parameters 
due to incomplete 
modelling of the 
nuclear physics 

involved. 



Next generation - High Precision Challenge

27

 Neutrino Energy [GeV]  Neutrino Energy [GeV] 

Simulation of oscillation effects     
in future DUNE
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Cross section  measurement 
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SBN - Short Base Line Program 
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SBN - Short Base Line Program 
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LAr TPC - MicroBooNE

LAr Time Projection Chamber

Near surface detector

Active mass : 85 tons 
Triggered by PMTs
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LAr TPC - MicroBooNE 

Has 3 wire planes
- 3 mm wire spacing 

giving impeccable spatial          
resolution

- Final plane collects charge 
giving calorimetric     
measurement

    Low tracking threshold
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LAr TPC
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Charge Current Quasi Elastic (CCQE)

- Most relevant for the 
BNB energies

- The simplest interaction 
- Was studies for years 

with electrons scattering
- Enables energy 

reconstruction
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Charge Current Quasi Elastic (CCQE)

  Experiment Target µ-dependence p-dependence 

12C dσ/dEν 
doi: 10.1063/1.3661556

MiniBooNE 
Detector

12C d2σ/dPµdcosθµ 
Phys Rev D88 (2013)

12C, 16O
dσ/dθµ        

Phys Rev D92 (2015) 

d2σ/dPµdcosθµ 
 PhysRevD.98.0124004 

d2σ/dPpdcosθp 
arXiv:1802.05078 [hep-ex]

MINERvA 12C, 56Fe, 208Pb d2σ/dP||dPT 
Phys Rev D97.052002

d2σ/dQ2p 
Phys Rev Lett 119 (2017)

40Ar dσ/dPµ, dσ/dcosθµ, 
dσ/dφµ

dσ/dPp, dσ/dcosθp, 
dσ/dφp
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CCQE - Background rejection

The signal is a vertex with associated 1μ1p solely 
Since MicroBooNE is a surface detector the main 
background is cosmic related, and needs to be properly 
estimated 

μμ

p



Improving simulation by using cosmic data from MicroBooNE  

- Simulated BNB using GENIE event generator. 

- Cosmic events from external unbiased data. 

37

Overlay 
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CCQE - Event Selection

Vertex of 2 semi-contained tracks 
(start within the fiducial volume)
one muon (≥ 100 MeV/c)
one proton (≥ 200 MeV/c)
no π0 , no charged π (≥ 70 MeV/c)

We allow any number of e, γ, n and charged hadrons below 
these thresholds.
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CCQE - Event selection

Number of 
events

Beam-on 
equivalent

Beam on 462±21.5

Beam off 15±3.9 10.6±2.7

Overlay 
CC1p0π 9538±97.7 486.6±5.0

After a year with 5E19 Protons On Target (POT):



CCQE - Cross section extraction 

40

Non
n No↵

n

⌘µn

- Background 

- Effective detection efficiency⌘µn

Bn

Bn MC

�nNtargets�n
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CCQE - Results

Prelim
inary

ν + 40Ar       µ + p + 39Ar
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CCQE - Results

Prelim
inary

ν + 40Ar       µ + p + 39Ar
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CCQE - Results

Prelim
inary

ν + 40Ar       µ + p + 39Ar



Incoming neutrino Energy Reconstruction
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Cherenkov detectors:
Assuming QE interaction
Using solely the final state lepton 

Tracking detectors:
Need good hadronic reconstruction

EQE =
2M✏+ 2MEl �m2

l

2(M � El + |kl|cos✓)

✏ is the nucleon separation energy ~ 20 MeV

Ecal = El + Ekin
p + ✏
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CCQE - Results

Prel
im

inar
y



46

- Improved theory

- External constraints on nuclear model

- Use near detector 
- Where we wish to probe nuclear physics and no 

oscillation effects
- But flux and nuclear models are convoluted  

Energy Reconstruction Approaches
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Electron for neutrinos 
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- Electrons and Neutrinos have:
- Similar interactions 
- Same nuclear effects 

Electron beam have known energy
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Testing neutrino generators 
with inclusive electron scattering data

Energy Transfer (GeV)
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12C(e,e’)    E = 0.961 GeV        = 37.5˚✓

            El-El’ [GeV]                

Testing neutrino generators 
with inclusive electron scattering data
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           : Playing the Neutrino game 

Let’s analyse electron data as if it was ‘Neutrino data’
- Select a specific interaction
- Scale the electron data 
- Compare to event generators
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CLAS Detector
Electron beam with energies up to 6 GeV

Large (~4π) acceptance  

Charged particles above detection 

threshold:

Pp > 300 MeV/c

Pπ+/- > 150 MeV/c

Open Trigger



Wide Phase Space 
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Targets:
   4He, 12C, 56Fe     

Energies:
   1.1, 2.2, 4,4 GeV

CLAS A(e,e’p) Data 
                 H2O
                 CH 
                 Ar



            A(e,e’p) Event Selection
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Focus on QE events:
  1 proton above 300 MeV/c  
  no additional charged hadrons above threshold 



Background Subtraction
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Rotate π  around q
!

 to 
determine detection 
acceptance

(e,e’p)


Subtracting undetected 2 proton 
events to get 1proton sample the 

similar way  


Subtracting undetected pions to get 0 pion sample 


(e,e’)


Proton	mul&plicity	
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57

- Using events with two hadrons,

- Rotating p,π around q and 
determine π detection efficiency 

- Subtract contribution to QE-like

Same for final states with more 
than 2 hadrons 

P

Data driven Background Subtraction
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Testing the incoming energy reconstruction
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Erec Worse with Higher Mass Number
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Erec Worse with Higher Energy

Mariana Khachatryan
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Data Simulation Comparison
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Radiative Correction 

Loop 
Corrections

ISR

FSR

Loop 
Corrections

A first implementation of the radiative corrections to GENIE to account 
for the following processes: 

Based on Mo and Tsai calculation
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Radiative Correction - Validation
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Disagreements between Data and MC
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Fig. 3: Calorimetric Reconstructed Energy | The number of weighted A(e, e0p)1p0⇡ events per GeV plotted as
a function of the reconstructed calorimetric energy Ecal for data (black points) and GENIE (black line). Di↵erent
panels show results for di↵erent beam energies and target nuclei combinations: Carbon target with 1.159 (a), 2.257
(b) and 4.453 (c) GeV incident beam and Iron target with 2.257 (d) and 4.453 (e) GeV incident beam. Colored lines
show the contribution by di↵erent processes to the GENIE simulation: QE (blue), MEC (cyan), RES (green) and
DIS (magenta). The GENIE results are normalized to the same integral as the data in each panel. Error bars
include statistical and systematical uncertainties at the 68% (1�) level. Error bars are not shown when they are

smaller than the size of the data point.

Fig. Extended Data Fig. 3. GENIE includes quasielastic
lepton scattering (QE), interactions of the lepton with a
meson exchanged between two two nucleons (meson ex-
change currents or MEC), resonance production in nuclei
(RES) and deep inelastic scattering (DIS).

We generated events using e-GENIE, propagated the
events through CLAS6 acceptance maps to determine
which particles were detected and smeared the momenta
of these particles based on the known CLAS6 resolu-
tion. We then analyzed the resulting simulated events
using the same code as the data (including the 1/�Mott

weighting and the subtraction for undetected particles)
and compared the two. See Methods for details.

Electron radiation was added to the simulation based
on the formalism of Ref. [] and verified against 4 GeV
H(e, e0) elastic scattering data. Radiation was negligible
for photons with more than 10 MeV. See Extended Data
Fig. 2.

To demonstrate the relevance of our electron study to
neutrino interactions, Extended Data Fig. 4 compares
the predictions of e-GENIE and ⌫-GENIE for the events
described above. For this study we turned o↵ electron
radiation and weighted e-GENIE events by 1/�Mott. The
resulting event distributions are very similar for e-GENIE
and ⌫-GENIE.

III. INCIDENT ENERGY RECONSTRUCTION

There are two general approaches for reconstructing
the incident neutrino energy, based on the particle de-
tection capabilities of the neutrino detector.
Water Cherenkov detectors only measure charged lep-

tons and pions. If the neutrino scattered quasielastically
(QE) from a stationary nucleon in the nucleus, its energy
can be reconstructed from the measured lepton as:

EQE =
2MN ✏+ 2MNEl �m

2
l

2(MN � El + kl cos ✓l)
, (4)

where ✏ ⇡ 20 MeV is the average nucleon separation en-
ergy, MN is the nucleon mass, and (ml, El, kl, ✓l) are the
scattered lepton mass, energy, momentum, and angle.
Nucleon motion will doppler-broaden EQE .
Figure 2 shows the EQE distribution for 1.159 GeV

C(e, e0)0⇡ events which are most relevant for T2K and
HK. We observe a broad peak centered at the real beam
energy with a large tail extending to lower energies. The
peak is broadened by the fermi motion of the nucleons
in the nucleus. The tail is caused by non-quasielastic
reactions that pass the (e, e0)0⇡ selection. The tail is
cut o↵ at the lowest energies by the CLAS6 minimum
detected electron energy threshold of 0.4 GeV.
As can be seen, e-GENIE over predicts this low energy

tail by about 30%. This energy reconstruction discrep-
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Pmiss
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Plot
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Fig. 4: Reconstructed energies and perpendicular momenta | (a) the missing transverse momentum, P?
miss

for 2.257 GeV C(e, e0p)1p0⇡ events for data (black points) and GENIE (black histogram). The vertical lines at 200
MeV/c and at 400 MeV/c separate the three bins in P

?
miss. The dashed lines show the di↵erent components of the

GENIE simulation, QE (blue), MEC (cyan), RES (green) and DIS (magneta). The calorimetric energy Ecal for
di↵erent bins in P

?
miss: (b) P

?
miss < 200 MeV/c, (c) 200 MeV/c  P

?
miss  400 MeV/c and (d) P?

miss > 400 MeV/c .
The plots have been area normalized and each bin has been scaled by the bin width.

ancy is observed despite the overall good reproduction of
the di↵erential inclusive cross-sections (Extended Data
Fig. 3) and 0 to 2 pion multiplicities (Extended Data
Fig. 7), which are the two main observables to which
current experiment tune models in order to trust their
energy reconstruction predictions.

Tracking detectors measure all charged particles above
their detection thresholds. The “calorimetric” incident
neutrino energy is then the sum of all the detected par-
ticle energies:

Ecal =
X

Ei + ✏ (5)

where Ei are the detected nucleon kinetic energies and
the lepton and meson total energies.

Figure Extended Data Fig. 5 shows the Ecal distribu-
tion for 1.159, 2.257 and 4.453 GeV C(e, e0p)1p0⇡ events
and 2.257 and 4.453 GeV Fe(e, e0p)1p0⇡ events. For all
measurements we observe a sharp peak at the real beam
energy, followed by a large tail at lower energies. For
Carbon only 32–60% of the events reconstruct to within
5% of the real beam energy. For the heavier Iron nucleus
this faction is only 22–26%, highlighting the crucial need
to well model the low-energy tail of these distributions,
see Extended Data Table 1.

e-GENIE reproduces the low energy tail well for low
beam-energies, but seem to overpredict it for higher en-
ergies. The tail seems to be dominated by resonance pro-
duction that did not result in the production of charged
particles above detection threshold. At a higher energy,

contributions from deep inelastic scattering (DIS) pro-
cesses also becomes significant.
?? shows that, as expected, e-GENIE describes data in

the QE peak much better (i.e., at 0.8  xB  1.2, where
xB = Q

2
/(2mN!)). This cut was done using knowledge

of the true beam energy which is not possible in neutrino
experiments.
While the (e, e0)0⇡ quasielastic reconstruction of Eq. 4

gives a much broader peak at the true beam energy than
the calorimetric energy Ecal (see Fig. Extended Data Fig.
8), it has the same tail of lower energy events for the
same (e, e0p)1p0⇡ data set. The two energy reconstruc-
tion methods agree remarkably well within their respec-
tive resolutions and therefore consistency between the
two methods does not indicate accuracy, see Fig. Ex-
tended Data Fig. 9.

IV. TRANSVERSE VARIABLES AND MODEL

TUNING

Neutrino experiments that use tracking detectors can
precisely measure the transverse missing momentum of
the reaction (using the known incident neutrino direc-
tion),

P
?
miss = |~P

?
e0 + ~P

?
p |, (6)

where ~P
?
e0 and ~P

?
p are the three-momenta of the detected

lepton and proton, perpendicular to the direction of the
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Future Plans -Approved run for
Ten times more luminosity
Keeping the low threshold 300 MeV/c
Targets: 2D, 4He, 12C, 16O, 40Ar, 120Sn 
Incoming 1 - 7 GeV relevant for 
DUNE incoming flux

Overwhelming support from: 
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Implications and future plans
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Potential implication on            analysis
The expected energy at DUNE far detector as reconstructed using the energy 
feed down from A(e,e’p) data and simulation 

13
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Fig. Extended Data Fig. 7: The proton (black) and charged pion (blue) multiplicities for data (points) and
GENIE (lines) for 2.257 GeV carbon.
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QE , (lower left) Fe E
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right) Fe E

QE . The plots are area normalized and each bin has been scaled by the bin width.
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preliminary

The expected energy at DUNE far detector as reconstructed using the energy 
feed down from A(e,e’p) data and simulation 

Un-modelled nuclear effects can be mistakingly considered as oscillation effects 



Potential implication on            analysis
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A rigorous study of νA and eA interactions will have a major contribution to 
DUNE’s ability to measure mixing parameters 

El - El’



Project 2020 2021 2022 2023 2024

Publish: CCQE + 
technical overlay 
papers

high statistics analysis multi-bins 
differential cross section 

Expand phase space  

 

Finalise LArTPC 
detector+modelling 
systematics

Publish: QE, 
inclusive 

+ 
Offer an electron 
data based tune to 

                    preparation & data-taking                  analysis and publications

Resonances: analysis + publication 

71

Future Plans
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Summary
Presenting a first CCQE differential cross section measurement in Ar with 
MicroBooNE, 
A wide phase space electron scattering data is used to test the methods for incoming 
energy reconstruction and improve νA interaction modelling.

Major disagreement between data and event generators. 
For QE-like events both leptonic and hadronic reconstructed energies have bad 
resolution, mostly for heavier nuclei and high missing transverse momentum

Looking forward to
- Expand the phase space and obtain new data with more relevant nuclei, energies 

and processes.
- Better measure and constrain systematics inside MicroBooNE 
- Working on future experiments 



Thank you for your attention
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Future Plans

Project 2020 2021 2022 2023 2024
Publish: CCQE + 
technical overlay 
papers

high statistics analysis multi-bins 
differential cross section 

Expand phase space  

 Finalise LArTPC 
detector+modelling 
systematics

Publish: QE, 
inclusive 

+ 
Offer an electron 
data based tune to 

                    
preparation  

& data-taking 
                 analysis and publications

Resonances: analysis + publication 

Joining ArgonCube 
Collaboration as 
DAQ lead 

R&D for a 
dedicated DAQ 
suitable for the 
chosen design

Commissioning a 
readout + DAQ 

prototype in local 
lab

Join DAQ commissioning at Fermilab
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MicroBooNE First Results 

CC inclusive  
good cosmic rejection 
model dependencies are negligible

Charged particle Multiplicity 
First detailed measurement testing GENIE 
models on Argon nuclei

CC 
Low statistics, lower cosmic background  
Model dependent  

⇡0

arXiv:1805.06887 (submitted to PRD)

MicroBooNE–Note–1032–PUB

MICROBOONE-NOTE-1045-PUB



MC vs. (e,e’p) Data: Isolating the QE peak
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4 FIG. EXTENDED DATA 1

4 Fig. Extended Data 1

All sectors
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CLAS: Acceptance maps availble

77

CLAS  has  a  different 
efficiency,  which  we 
will  publish  as 
acceptance  maps  for 
public use for each:
- Target
- Particle type
- Particle momentum
 Axel Schmidt, Reynier Cruz Torres, Barak Schmookler, Adin Hrnjic
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Generators - Electron mode database 

https://docs.google.com/document/d/1qm_kY8M7aOQFnoPCcOwxS7VZnlhy3KUPurl_R89xkSI/edit
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Generators - Electron mode database 

https://docs.google.com/document/d/1qm_kY8M7aOQFnoPCcOwxS7VZnlhy3KUPurl_R89xkSI/edit
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Generators - Electron mode database 

https://docs.google.com/document/d/1qm_kY8M7aOQFnoPCcOwxS7VZnlhy3KUPurl_R89xkSI/edit
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Generators - Electron mode database 

https://docs.google.com/document/d/1qm_kY8M7aOQFnoPCcOwxS7VZnlhy3KUPurl_R89xkSI/edit
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Generators - Electron mode database 

https://docs.google.com/document/d/1qm_kY8M7aOQFnoPCcOwxS7VZnlhy3KUPurl_R89xkSI/edit
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Generators - Electron mode database 

https://docs.google.com/document/d/1qm_kY8M7aOQFnoPCcOwxS7VZnlhy3KUPurl_R89xkSI/edit
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Generators - Electron mode database 

https://docs.google.com/document/d/1qm_kY8M7aOQFnoPCcOwxS7VZnlhy3KUPurl_R89xkSI/edit
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Testing neutrino generators 
with inclusive electron scattering data

            El-El’ [GeV]                
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Testing neutrino generators 
with inclusive electron scattering data

            El-El’ [GeV]                
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Comparing to data - Inclusive A(e,e’)

Energy Transfer (GeV)
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CLAS Detector

Large (~4π) acceptance  

Sub detectors:

- Tracking in a toroidal field
- TOF scintillators
- Cherenkov detector
- EM calorimeter
Detection threshold: 300 MeV/c

Open Trigger



90

Nuclear model      Local fermi gas model
QE                        Lewellyn Smith for neutrino 

          Rosenbluth CS for electrons
MEC                     Empirical Dytman model
Resonances           Berger Sehgal
FSI                        hA (data driven) + variations 

GENIE is calculating each contribution separately and then summing them up

Adding radiative correction

GENIE3 Simulation
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Electron Scattering Data vs. GENIE 
List of changes in GENIE 

- Corrected Mott cross section expression 
- Empirical MEC:

- Added boost back to lab frame. 
- Corrected mass for cluster of particles. 
- Corrected form for dipole. 
- Corrected expression for Form Factor. 
- Try Berger Seghal, with corrected coupling constant

- RESKinematics Maximum Cross-section
- Replaced old calculation by a GSL Minimizer. 

- Switched to Local Fermi Gas Model. 



µ            A(e,e’p) Event Selection
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Repeat the e4nu analysis with cosmic muons inside MicroBooNE

Right now not enough events 
Will be possible with smart triggering.
Currently testing a joint 
CRT - PMT trigger 

μ

μ

p



LArTPC DAQ systems - 
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ν stream

In parallel a continuous SuperNova stream  
is saved for 24h

Rate
BNB 3.5 Hz

NUMI 0.7 Hz
EXTernal 12 Hz



LArTPC DAQ systems 
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CCQE - Event selection

MicroBooNE trigger 
Pairs of tracks with close proximity (11 cm separation) 
Pandora cosmic removal pass 

Energy deposition profile 
Track length
Scintillation light
Collinearity |θ12 - 90°| ≤ 55º

Vertex activity 
Coplanarity |Δφ -180°| ≤ 35º
pT imbalance pT ≤ 0.35 GeV/c

arXiv:1812.05679
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CCQE - Event selection

arXiv:1812.05679

MicroBooNE trigger 
Pairs of tracks with close proximity (11 cm separation) 
Pandora cosmic removal pass 

Energy deposition profile 
Track length
Scintillation light
Collinearity |θ12 - 90°| ≤ 55º

Vertex activity 
Coplanarity |Δφ -180°| ≤ 35º
pT imbalance pT ≤ 0.35 GeV/cC
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Q
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CCQE - Event selection

arXiv:1812.05679

MicroBooNE trigger 
Pairs of tracks with close proximity (11 cm separation) 
Pandora cosmic removal pass 

Energy deposition profile 
Track length
Scintillation light
Collinearity |θ12 - 90°| ≤ 55º

Vertex activity 
Coplanarity |Δφ -180°| ≤ 35º
pT imbalance pT ≤ 0.35 GeV/cC

C
Q

E 
PS

C
os

m
ic

 B
G

 fi
lte

r
Pr

es
el

ec
tio

n 



MicroBooNE trigger 
Pairs of tracks with close proximity (11 cm separation) 
Pandora cosmic removal pass 

Energy deposition profile 
Track length
Scintillation light
Collinearity |θ12 - 90°| ≤ 55º

Vertex activity 
Coplanarity |Δφ -180°| ≤ 35º
pT imbalance pT ≤ 0.35 GeV/c
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CCQE - Event selection

arXiv:1812.05679

pT = plT + ppT

pl

pp
νC

C
Q

E 
PS

C
os

m
ic

 B
G

 fi
lte

r
Pr

es
el

ec
tio

n 

ppT

plT



99

CCQE - Results
C
C
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E
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e

Current anomalies including the LSND and MiniBooNE low 
energy excess. 

Neutrino Anomaly - Low Energy Excess 

π0
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LAr TPC - MicroBooNE 

As of the third run period a 
Cosmic Ray Tagger (CRT) 
has been commissioned 
around MicroBooNE 
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For the  LArTPC  community
March 4th  2019 WH Fermilab

join us for a day long workshop to discuss the 
latest in the overlaying technique: adding 
simulated signals on top of collected data and 
help design the new generation of MC samples 

Organisers: Erica Snider, Afroditi Papadopoulou, Wesley Ketchum, Adi Ashkenazi

Overlay Workshop
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Increased non QE 
background for higher

9

Pmiss
┴ 

Plot

miss ~Pmiss
? < 0.2

~Pmiss
? > 0.4

0.2 < ~Pmiss
? < 0.4

preliminary

preliminary

56Fe

EQE
9

Pmiss
┴ 

Plot

miss

P < 0.2 
< 0.2 P 0.4 <

P > 0.4 


