#### DVCS and $\pi^0$

F.-X. Girod

UConn/JLab

Mar 13th 2020

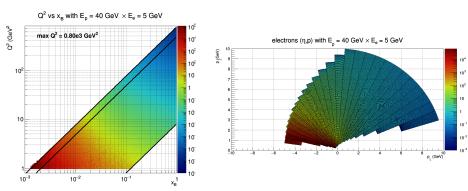




## Input parameters

Scenarios 10 GeV  $\, imes$  100 GeV and 5 GeV  $\, imes$  40 GeV

Input: Electron-Ion Collider Detector Requirements and R&D Handbook v1.1 Jan 10<sup>th</sup> 2019 available **here** 

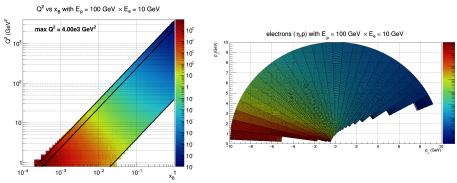

http://eicug.org/web/sites/default/files/EIC\_HANDBOOK\_v1.1.pdf

Not definitive on photon resolutions, in particular calorimeter granularity





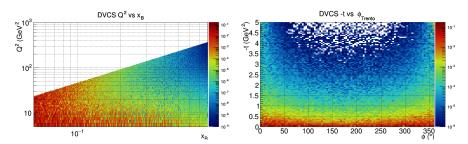
## Electron DIS kinematics scenario 1




High luminosity scenario Focus on higher values of  $x_B$ 



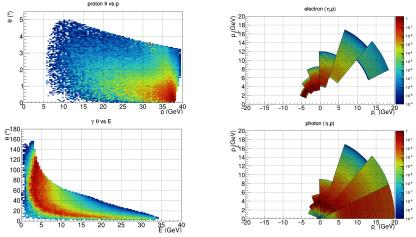



#### Electron DIS kinematics scenario 2



High energy scenario Access to lowest  $x_B$ 

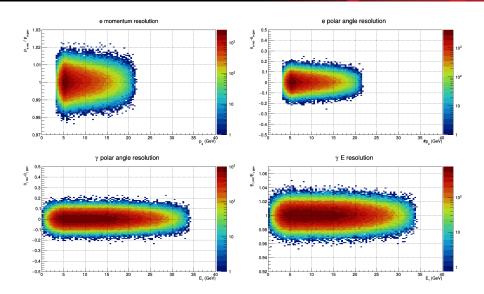



#### DVCS 5 GeV × 40 GeV



Coverage focused on high  $x_B$  and high  $Q^2$  (mostly to save time now) -t extends to high values but dominated by low range




## Electrons and photons 5 GeV $\times$ 40 GeV



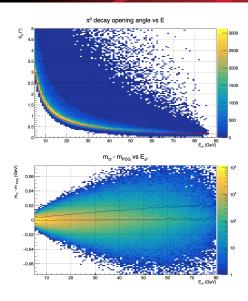
Questions on ROOT polar plots here (?)



## Single particle resolutiosns



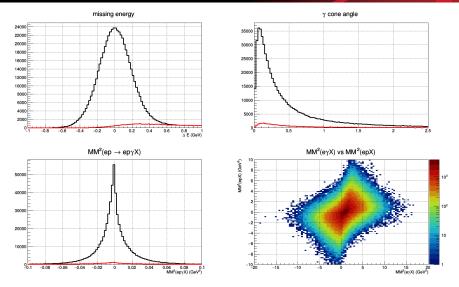







## $\pi^0$ decay at 10 GeV $\times$ 100 GeV

Photon angular resolution is essential to discrimate clusters at high energies Both  $\theta$  and  $\phi$  have  $\sigma \sim 0.05^{\circ} < 1$  mrad

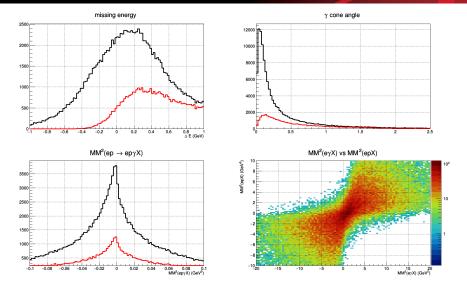

Corresponding invariant mass resolution  $\sim 5 \text{ to } 20 \text{ MeV}$ 







# DVCS $\pi^0$ separation 5 GeV $\times$ 40 GeV




Excellent separation at low energy





# DVCS $\pi^0$ separation 10 GeV $\times$ 100 GeV



Challenging background at high energy



## **Summary**

- ullet Scenarios 10 GeV imes 100 GeV and 5 GeV imes 40 GeV
- First look at DVCS  $\pi^0$  separation
- Absolute normalization of  $\pi^0$  to DVCS: fair uncertainties / arbitrariness

- Photon angular resolution is crucial
- First results only, lots of possible improvements
- Other backgrounds also (?)



