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      Outline: 

- Impulse approximation for nuclear GPDs 
- Enhancement of nuclear DVCS asymmetries 
- Codes for nuclear GPDs and ALU based on the dual 

parametrization for proton GPDs
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Impulse approximation for nuclear GPDs

2

• Nuclear GPD = (sum of unmodified proton and neutron GPDs) x nuclear FF, 
Guzey, Strikman, PRC 68 (2003) 015294; Guzey, PRC 78 (2008) 025211

II. MODEL FOR NUCLEAR AND NUCLEON GPDS

We use a simple model for nuclear GPDs that captures main features of the dependence

of nuclear GPDs on the atomic number A and on the momentum transfer t. We assume that

the nucleus consists of A uncorrelated nucleons: Z protons and N = A − Z neutrons [25],

see Fig. 1.
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FIG. 1: Schematic representation of nuclear quark GPDs.

For simplicity, we shall consider spin-0 nuclei. In this case, there is only one leading-twist

quark nuclear GPD, Hq
A, which can be expressed in terms of the free proton and neutron

quark GPDs Hq and Eq as follows,
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]

FA(t) , (1)

where FA(t) is the nuclear form factor normalized to unity; mN is the nucleon mass; other

variables are introduced below. Note that the GPDs Hq and Eq enter Eq. (1) in the com-

bination that leads to the proper nuclear charge form factor [26].

The Bjorken variable xA is defined with respect to the nuclear target. In the laboratory

frame, we have

xA =
Q2

2νMA
=

Q2

2νAmN
=

1

A
xB , (2)

where ν is the photon energy; MA is the mass of the nucleus. From the relations

ξA =
xA

2− xA
, ξN =

xB

2− xB
, (3)
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it follows that
ξN

1 + ξN
= A

ξA
1 + ξA

. (4)

Next we find the relation between x and xN . In the symmetric notation [8], the outgoing

interacting quark carries the plus-momentum k+ = (x + ξA)P̄
+
A , see the left-hand side of

Fig. 1. On the other hand, k+ can also be written as (see the right-hand side of Fig. 1)

k+ = (xN + ξN)P̄
+
N = (xN + ξN)

(

1

A
P+
A +

∆+

2

)

= (xN + ξN)

(

1

A
(1 + ξA)− ξA

)

P̄+
A . (5)

In this derivation, we used the assumption that P+
N = P+

A /A. Therefore, with help of Eq. (4),

we find that
xN

x
=

ξN
ξA

. (6)

In the forward limit, Eq. (1) reduces to the model for nuclear quark parton distribution

functions (PDFs),

qA(xA, Q
2) = A

[

Z qp(xB, Q
2) +N qn(xB, Q

2)
]

. (7)

These nuclear PDFs satisfy the baryon number (total charge) and momentum sum rules,
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Taking the first x-moment of the nuclear GPD weighted with quark charges, one obtains

the nuclear electric form factor,

F e.m.
A (t) ≡

∫ 1

−1

dx
∑

q

eq H
q
A(x, ξA, Q

2, t) = [ZF p
E(t) +NF n

E(t)]FA(t) , (9)

where F p,n
E (t) = F p,n

1 (t) + t/(4m2
N )F

p,n
2 (t) are the electric form factors of the proton and

neutron expressed in terms of the corresponding Dirac and Pauli form factors.

The fact that the right-hand side of Eq. (9) does not depend on ξA means that the first

x-moment of Hq
A satisfies polynomiality. An examination shows that higher x-moments of

Hq
A do not satisfy polynomiality, even if the proton and neutron GPDs do. As we mentioned

in the Introduction, it is an outstanding theoretical challenge to build a model of nuclear

GPDs with the property of polynomiality.
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• The model  
- satisfies the baryon number and momentum sum rules in the forward limit  
- gives the nuclear form factor FA(t) for the first x-moment 
- in general, violates polynomiality 

• The model naturally predicts enhancement of DVCS beam-spin asymmetry 
at small |t|: ALU(nucleus)/ALU(proton) ~ A/Z



Enhancement of nuclear DVCS asymmetries
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FIG. 4: The ratio of the nuclear to free proton beam-spin DVCS asymmetries, AA
LU (φ)/A

p
LU (φ), as

a function of the momentum transfer t for He, N, Ne, Kr and Xe nuclei. The calculation is done

at xB = 0.065, Q2 = 1.7 GeV2 [34] and φ = 90◦.

previous analyses [25, 26]. The enhancement of AA
LU(φ)/A

p
LU(φ) above unity is the combi-

natoric effect: Since the interference between the Bethe-Heitler and the DVCS amplitudes

scales as Z(A − 1) and the Bethe-Heitler amplitude squared scales as Z(Z − 1), AA
LU(φ)

scales as (A− 1)/(Z − 1).

At large values of t, when the nuclear form factor eliminates the coherent-enriched term,

AA
LU(φ) is given by the incoherent contribution, and AA

LU(φ)/A
p
LU(φ) < 1.

The fact that AA
LU(φ)/A

p
LU(φ) < 1 is a result of the neutron contribution to AA

LU(φ), see

Eq. (20). First (this is effect is largest), the neutron contribution decreases the numerator of

AA
LU(φ), since F1n < 0, while F1p > 0. Second, the positive neutron contributions |T n

BH|2+In

(somewhat suppressed by the neutron electromagnetic form factors compared to the proton

contribution) and |T n
DVCS|2 (similar to the proton contribution) increase the denominator of

AA
LU(φ). The decrease of the numerator of AA

LU(φ) and the increase of the denominator work

together to reduce AA
LU(φ)/A

p
LU(φ) significantly below unity at large t.

Note that our present finding that AA
LU(φ)/A

p
LU(φ) < 1 at large t does not contradict the
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FIG. 6: The ratio of the nuclear to free proton beam-spin DVCS asymmetries, AA
LU (φ)/A

p
LU (φ),

as a function of A. The calculation is done at xB = 0.065, Q2 = 1.7 GeV2 and φ = 90◦.

in Eq. (20). The right panel corresponds to the incoherent contribution calculated using last

two terms in Eq. (20).

In the left panel of Fig. 5, the curve for 4He lies above the curves for other nuclei because

the coherent-enriched contribution scales (A− 1)/(Z − 1).

In the right panel of Fig. 5, the ratioAA
LU(φ)/A

p
LU(φ) at small t is close to unity because the

neutron contribution is suppressed by the small value of the neutron Dirac form factor F1n(t).

As |F1n(t)| increases with increasing |t|, the ratio AA
LU(φ)/A

p
LU(φ) begins to progressively

deviate from unity.

Taking different t-slices of Fig. 4, we can study the A-dependence of AA
LU(φ). Figure 6

presents AA
LU(φ)/A

p
LU(φ) as a function of A at t = −0.018 GeV2 (upper set of points) and

t = −0.2 GeV2 (lower set of points). These two values of t correspond to the average

HERMES values [34].

The interpretation of Fig. 6 is the same as for Fig. 4. At small values of t, the coherent-

enriched contribution dominates and AA
LU(φ)/A

p
LU(φ) > 1 due to the fact that AA

LU(φ) scales

roughly as (A − 1)/(Z − 1). At large t, where only the incoherent contribution matters,

AA
LU(φ)/A

p
LU(φ) < 1 due to the neutron contribution (see the discussion above).

Results presented in Fig. 6 should be compared to the results of the HERMES analy-
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Guzey, PRC 78 (2008) 025211



Codes for nuclear GPDs
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• For nucleon GPDs, we used the corrected dual parametrization,Guzey, Teckentrup, 
PRD 74 (2006) 054027 and PRD 79 (2009) 017501  

• For calculation of DVCS cross section and asymmetries, leading-twist BMK 
formalism, Belitsky, Mueller, Kirchner, Nucl. Phys. B629 (2002) 323 

• For nuclear form factors, parametrization for He-4, Frosch, McCarthy, Rand, Yearian, Phys. 

Rev. 160 (1967) 874 and nuclear density from the tables, De Jager, De Vries, De Vries, Atom. Data 
Nucl. Data Tabl.  36 (1987) 495 

• Fortran codes for the calculation of the beam-spin DVCS asymmetry ALU for 
He-4, N-14, Ne-20, Kr-84, Xe-131, http://hepd.pnpi.spb.ru/~vguzey/
Dual_nuclear_2009.html 

• Kinematic coverage: 0.01 < xB < 0.5, 1 < Q2 < 10 GeV2, 0.005 < |t| < 1 GeV2 

• The codes use grids for proton and neutron CFFs H and E. For the GPD E, 
one specifies the values of -0.6 < Ju < 0.6, -1 < Jd < 1. 

http://hepd.pnpi.spb.ru/~vguzey/Dual_nuclear_2009.html
http://hepd.pnpi.spb.ru/~vguzey/Dual_nuclear_2009.html
http://hepd.pnpi.spb.ru/~vguzey/Dual_nuclear_2009.html
http://hepd.pnpi.spb.ru/~vguzey/Dual_nuclear_2009.html

