

Removing Flat Directions in SMEFT Fits: Complementing the LHC with polarized EIC data

Daniel Wiegand
Northwestern University/Argonne National Lab
@Electroweak and BSM Physics at the EIC

The Why, the What and the How

the Why

- No smoking gun(s) at LHC
- Standard Model Effective Theory (**SMEFT**) is a systematic way to combine and analyze data and look for New Physics in a model-independent way

the What

- Four-Fermi Operators are a large class of SMEFT operators
- Flat directions are a prevalent problem resolve before global fit

the How

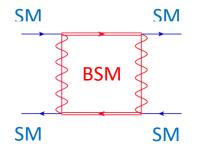
- Future Electron-Ion Collider (EIC) :
 - Lift flat directions by combining polarized observables
- Combine with LHC data for strongest bounds (here: Drell-Yan)

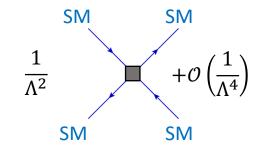
SMEFT - Motivation

Standard operating HEP procedure:

1) Pick BSM Model 2) Make Prediction 3) Compare to Data (ft Exclusion Plot) GoTo 1)

SMEFT - Motivation


Standard operating HEP procedure:


1) Pick BSM Model 2) Make Prediction 3) Compare to Data (ft Exclusion Plot) GoTo 1)

More Economic Way:

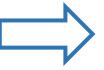
Average over heavy modes at SM energies (Effective Action: *Wilson et al*)

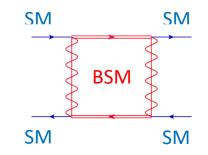
SMEFT - Motivation

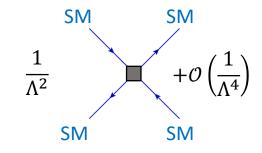
Standard operating HEP procedure:

1) Pick BSM Model

2) Make Prediction


3) Compare to Data (ft Exclusion Plot)




GoTo 1)

More Economic Way:

Average over heavy modes at SM energies (Effective Action: *Wilson et al*)

\triangle

Quantify deviation from SM through comparison with data

- Model independent constraints on new physics
- Maximal gain from data
- Part of the LHC legacy

- Higher dimensional operators built from SM fields
- Modification of SM couplings/EWSB/...

	$1:X^3$		$2:H^6$		$3:H^4D^2$			$5:\psi^2H^3+\mathrm{h.c.}$		
Q_G	$f^{ABC}G_{\mu}^{A u}G_{ u}^{B ho}G_{ ho}^{C\mu}$	Q_H ($H^\dagger H)^3$	$Q_{H\square}$	$(H^{\dagger}I$	$H)\square(H^{\dagger}H)$	<i>I</i>)	Q_{eH}	$(H^\dagger H)(ar{l}_p e_r H)$	
$Q_{\widetilde{G}}$	$f^{ABC}\widetilde{G}^{A u}_{\mu}G^{B ho}_{ u}G^{C\mu}_{ ho}$			Q_{HD}	$H^{\dagger}D_{\mu}$	$H\big)^* \left(H^\dagger I$	$O_{\mu}H$	Q_{uH}	$(H^\dagger H)(ar q_p u_r \widetilde H)$	
Q_W	$\epsilon^{IJK}W_{\mu}^{I\nu}W_{\nu}^{J\rho}W_{\rho}^{K\mu}$							Q_{dH}	$(H^\dagger H)(ar q_p d_r H)$	
$Q_{\widetilde{W}}$	$\epsilon^{IJK} \widetilde{W}_{\mu}^{I\nu} W_{\nu}^{J\rho} W_{\rho}^{K\mu}$									
	$4:X^2H^2$		$\delta:\psi^2XH$	+ h.c.	+ h.c. 7			$7:\psi^2H^2D$		
Q_{HG}	$H^\dagger H G^A_{\mu u} G^{A \mu u}$	Q_{eW}	$(\bar{l}_p\sigma^{\mu u}e$	$(r_r) au^I H W$	$V_{\mu\nu}^{I}$	$Q_{Hl}^{(1)}$		$(H^\dagger i \overleftarrow{1}$	$\overrightarrow{\mathcal{O}}_{\mu}H)(ar{l}_{p}\gamma^{\mu}l_{r})$	
$Q_{H\widetilde{G}}$	$H^\dagger H \widetilde{G}^A_{\mu u} G^{A \mu u}$	Q_{eB}	$(ar{l}_p\sigma^{\mu u}$	$(e_r)HB_\mu$	ιν	$Q_{Hl}^{(3)}$		$(H^\dagger i \overleftrightarrow{D}$	$(\bar{l}_p T^I \gamma^\mu l_r)$	
Q_{HW}	$H^\dagger H W^I_{\mu u} W^{I\mu u}$	Q_{uG}	$(ar{q}_p\sigma^{\mu u}T$	$({}^{\!$	$G^A_{\mu u}$	Q_{He}		$(H^\dagger i \overleftarrow{I}$	$\stackrel{ ightarrow}{ ho}_{\mu}H)(ar{e}_{p}\gamma^{\mu}e_{r})$	
$Q_{H\widetilde{W}}$	$H^\dagger H \widetilde{W}^I_{\mu u} W^{I \mu u}$	Q_{uW}	$(ar{q}_p\sigma^{\mu u}u$	$(\iota_r) au^I\widetilde{H}V$	$V^I_{\mu u}$	$Q_{Hq}^{(1)}$		$(H^\dagger i \overleftarrow{I}$	$\stackrel{ ightarrow}{ ho}_{\mu}H)(ar{q}_{p}\gamma^{\mu}q_{r})$	
Q_{HB}	$H^\dagger H B_{\mu u} B^{\mu u}$	Q_{uB}	$(ar{q}_p\sigma^{\mu u}$	$(u_r)\widetilde{H}B$	$\mu \nu$	$Q_{Hq}^{(3)}$		$(H^\dagger i \overleftrightarrow{D}$	$_{\mu}^{I}H)(ar{q}_{p} au^{I}\gamma^{\mu}q_{r})$	
$Q_{H\widetilde{B}}$	$H^\dagger H \widetilde{B}_{\mu u} B^{\mu u}$	Q_{dG}	$(ar{q}_p\sigma^{\mu u}T$	$\Gamma^A d_r) H$ ($G^A_{\mu u}$	Q_{Hu}		$(H^\dagger i \overleftarrow{D}$	$\overline{f}_{\mu}H)(ar{u}_{p}\gamma^{\mu}u_{r})$	
Q_{HWB}		Q_{dW}	$(ar{q}_p\sigma^{\mu u}d$	$(l_r) au^I H V$	$V^I_{\mu u}$	Q_{Hd}		$(H^\dagger i \overleftarrow{L}$	${\stackrel{ ightarrow}{D}}_{\mu}H)(ar{d}_{p}\gamma^{\mu}d_{r})$	
$Q_{H\widetilde{W}B}$	$H^\dagger au^I H \widetilde{W}^I_{\mu u} B^{\mu u}$	Q_{dB}	$(ar q_p \sigma^{\mu u}$	$(d_r)HB$	μν	$Q_{Hud} \; + \;$	h.c.	$i(\widetilde{H}^\dagger L$	$(\partial_{\mu}H)(ar{u}_{p}\gamma^{\mu}d_{r})$	
	$8:(\bar{L}L)(\bar{L}L)$		8 : (Ē	$(\bar{R}R)(\bar{R}R)$)		8:	$(ar{L}L)(ar{R}H$?)	
Q_{ll}	$(ar{l}_p\gamma_\mu l_r)(ar{l}_s\gamma^\mu l_t)$	Q_{ee}	$(ar{e}_p$	$\gamma_{\mu}e_{r})(ar{e}_{arepsilon})$	$_{i}\gamma^{\mu}e_{t})$	Q_{le}	($ar{l}_p \gamma_\mu l_r) (ar{e}$	$(s\gamma^{\mu}e_t)$	
$Q_{qq}^{(1)}$	$(ar q_p \gamma_\mu q_r) (ar q_s \gamma^\mu q_t)$	Q_{uu}	(\bar{u}_p)	$\gamma_{\mu}u_{r})(ar{u}_{r})$	$_s\gamma^\mu u_t)$	Q_{lu}	($ar l_p \gamma_\mu l_r) (ar u$	$_s\gamma^\mu u_t)$	
$Q_{qq}^{(3)}$	$(ar{q}_p \gamma_\mu au^I q_r) (ar{q}_s \gamma^\mu au^I q_t)$	Q_{dd}	$(ar{d}_p)$	$(\gamma_{\mu}d_r)(ar{d}_s)$	$_{s}\gamma^{\mu}d_{t})$	Q_{ld}	($ar l_p \gamma_\mu l_r) (ar d$	$(s\gamma^\mu d_t)$	
$Q_{lq}^{\left(1 ight)}$	$(ar{l}_p\gamma_\mu l_r)(ar{q}_s\gamma^\mu q_t)$	Q_{eu}	$(ar{e}_p)$	$\gamma_{\mu}e_{r})(ar{u}_{s}$	$_{i}\gamma^{\mu}u_{t})$	Q_{qe}	(6	$ar q_p \gamma_\mu q_r) (ar \epsilon$	$ar{e}_s \gamma^\mu e_t)$	
$Q_{lq}^{(3)}$	$(ar{l}_p \gamma_\mu au^I l_r) (ar{q}_s \gamma^\mu au^I q_t)$	Q_{ed}	$(ar{e}_p$	$\gamma_{\mu}e_{r})(ar{d}_{s}$	$_{i}\gamma^{\mu}d_{t})$	$Q_{qu}^{(1)}$	(4	$ar q_p \gamma_\mu q_r) (ar u_p)$	$(u_s \gamma^\mu u_t)$	
		$Q_{ud}^{(1)}$	$(ar{u}_p)$	$\gamma_{\mu}u_{r})(ar{d}_{z})$	$_s\gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$(ar{q}_p\gamma_\mu$	$_{\mu}T^{A}q_{r})(ar{u}% _{r})$	$(u_s \gamma^\mu T^A u_t)$	
		$Q_{ud}^{(8)}$	$(ar{u}_p\gamma_\mu T_\mu)$	$(ar{d}_r)$	$_s \gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$	(6	$ar q_p \gamma_\mu q_r) (ar q_p)$	$ar{l}_s \gamma^\mu d_t)$	
						$Q_{qd}^{(8)}$	$(ar{q}_p\gamma_p)$	$_{u}T^{A}q_{r})(a$	$ar{l}_s \gamma^\mu T^A d_t)$	
$8:(ar{L}R)(ar{R}L)+ ext{h.c.} \hspace{1cm} 8:(ar{L}R)(ar{L}R)+ ext{h.c.}$										
	$\overline{Q_{ledq}}$ ($ar{l}$	$(\bar{d}_s q)$	Q_{tj} Q	(1) quqd	$(ar{q}_p^j u_r) \epsilon_j$	$ar{q}_{s}^{k}(ar{q}_{s}^{k}d_{t})$				
	1				$ar{q}_p^j T^A u_r) \epsilon_j$	$q_k(ar{q}_s^kT^Ad_t)$)			
				$Q_{lequ}^{(1)}$	$(ar{l}_p^j e_r) \epsilon_j$					
					$ar{l}_p^j \sigma_{\mu u} e_r) \epsilon_j$		()			

Warsaw Basis: 59 Operators ($\delta B = 0$, $\delta L = 0$)

The Warsaw Basis

Write down all possible operators that new physics could induce

- Stay consistent with SM **symmetries**!
- Build from SM field content!

Lot's of tricks to eliminate redundant operators, e.g.

Integration-by-Parts (IBP)

$$(\partial_{\mu}\phi)\partial^{\mu}(\partial^{2}\phi) \leftrightarrow -\phi\partial^{4}\phi$$

Grzadkowski/Iskrzynski/Misiak/Rosiek (1008.4884)

	$1: X^3$		$2:H^6$		3:H	I^4D^2		$5:\psi^2H^3+\text{h.c.}$			
Q_G	$f^{ABC}G_{\mu}^{A u}G_{ u}^{B ho}G_{ ho}^{C\mu}$	Q_H (.	$H^\dagger H)^3$	Q_{H}	\Box (H^{\dagger})	$H)\Box(H^\dagger H$)	Q_{eH}	$(H^\dagger H)(ar{l}_p e_r H)$		
$Q_{\widetilde{G}}$	$f^{ABC}\widetilde{G}^{A u}_{\mu}G^{B ho}_{ u}G^{C\mu}_{ ho}$			Q_{HI}	$D \mid (H^\dagger D_\mu)$	H) * ($H^{\dagger}D$	μH	Q_{uH}	$(H^\dagger H)(ar q_p u_r \widetilde H)$		
Q_W	$\epsilon^{IJK}W_{\mu}^{I\nu}W_{\nu}^{J\rho}W_{\rho}^{K\mu}$							Q_{dH}	$(H^\dagger H)(ar q_p d_r H)$		
$Q_{\widetilde{W}}$	$\epsilon^{IJK} \widetilde{W}_{\mu}^{I\nu} W_{\nu}^{J\rho} W_{\rho}^{K\mu}$										
	$4:X^2H^2$		$6:\psi^2XH+ ext{h.c.}$				$7:\psi^2H^2D$				
Q_{HG}	$H^\dagger H G^A_{\mu u} G^{A\mu u}$	Q_{eW}	$(ar{l}_p\sigma^{\mu u}\epsilon$	$(r) au^I H$	$W^I_{\mu u}$	$Q_{Hl}^{(1)}$		$(H^\dagger i \overleftarrow{1}$	$\overrightarrow{\mathcal{O}}_{\mu}H)(ar{l}_{p}\gamma^{\mu}l_{r})$		
$Q_{H\widetilde{G}}$	$H^\dagger H \widetilde{G}^A_{\mu u} G^{A\mu u}$	Q_{eB}	$(ar{l}_p\sigma^{\mu u}$	$(e_r)H$	$B_{\mu u}$	$Q_{Hl}^{(3)}$		$(H^\dagger i \overleftrightarrow{D}$	$(\bar{l}_p T^I \gamma^\mu l_r)$		
Q_{HW}	$H^\dagger H W^I_{\mu u} W^{I \mu u}$	Q_{uG}	$(ar q_p \sigma^{\mu u} T$	$(A_{u_r})^{T}$	$\widetilde{H}G^A_{\mu u}$	Q_{He}		$(H^{\dagger}i\overleftarrow{L}$	$\stackrel{ ightarrow}{ ho}_{\mu}H)(ar{e}_{p}\gamma^{\mu}e_{r})$		
$Q_{H\widetilde{W}}$	$H^\dagger H \widetilde{W}^I_{\mu u} W^{I \mu u}$	Q_{uW}	$(ar{q}_p\sigma^{\mu u}u$	$(\iota_r) \tau^I \hat{I}$	$\widetilde{I}W^I_{\mu u}$	$Q_{Hq}^{(1)}$		$(H^\dagger i \overset{\leftarrow}{I}$	$\stackrel{ ightarrow}{ ho}_{\mu}H)(ar{q}_{p}\gamma^{\mu}q_{r})$		
Q_{HB}	$H^\dagger H B_{\mu u} B^{\mu u}$	Q_{uB}	$(ar{q}_p\sigma^{\mu u}$	$(u_r)\widetilde{H}$	$B_{\mu u}$	$Q_{Hq}^{(3)}$		$H^{\dagger}i\overleftrightarrow{D}$	$_{\mu}^{I}H)(ar{q}_{p} au^{I}\gamma^{\mu}q_{r})$		
$Q_{H\widetilde{B}}$	$H^\dagger H \widetilde{B}_{\mu u} B^{\mu u}$	Q_{dG}	$(ar{q}_p\sigma^{\mu u}T$	$(A_r)I$	$HG^A_{\mu u}$	Q_{Hu}		$(H^{\dagger}i\overleftarrow{D}$	$\overline{f}_{\mu}H)(ar{u}_{p}\gamma^{\mu}u_{r})$		
Q_{HWB}		Q_{dW}	$(ar{q}_p\sigma^{\mu u}\sigma^{\mu u}$	$(l_r)\tau^I H$	$W^I_{\mu u}$	Q_{Hd}		$(H^{\dagger}i\overleftarrow{L}$	$\overrightarrow{\partial}_{\mu}H)(ar{d}_{p}\gamma^{\mu}d_{r})$		
$Q_{H\widetilde{W}H}$	$H^\dagger au^I H \widetilde{W}^I_{\mu u} B^{\mu u}$	Q_{dB}	$(ar{q}_p\sigma^{\mu u}$	$(d_r)H$	$B_{\mu u}$	$Q_{Hud}+1$	h.c.	$i(\widetilde{H}^\dagger L$	$(\partial_{\mu}H)(ar{u}_{p}\gamma^{\mu}d_{r})$		
	$8:(\bar{L}L)(\bar{L}L)$		8:(1	$(\bar{R}R)(\bar{R}R)$	(R)		8:	$(\bar{L}L)(\bar{R}R$?)		
Q_{ll}	$(ar{l}_p\gamma_\mu l_r)(ar{l}_s\gamma^\mu l_t)$	Q_{ee}	$(\bar{e}_p$	$\gamma_{\mu}e_r)$	$(ar{e}_s \gamma^\mu e_t)$	Q_{le}	($(ar{l}_p\gamma_\mu l_r)(ar{e}$	$(s\gamma^{\mu}e_t)$		
$Q_{qq}^{(1)}$	$(ar q_p \gamma_\mu q_r) (ar q_s \gamma^\mu q_t)$	Q_{uu}	(\bar{u}_p)	$\gamma_{\mu}u_r)$	$(ar{u}_s \gamma^\mu u_t)$	Q_{lu}	($ar{l}_p \gamma_\mu l_r) (ar{u}$	$_s\gamma^\mu u_t)$		
$Q_{qq}^{(3)}$	$(ar{q}_p\gamma_\mu au^Iq_r)(ar{q}_s\gamma^\mu au^Iq_t)$	Q_{dd}	$(ar{d}_p$	$\gamma_{\mu} d_r)$	$(ar{d}_s \gamma^\mu d_t)$	Q_{ld}	($(ar l_p \gamma_\mu l_r) (ar d_p \gamma_\mu l_r)$	$(s\gamma^\mu d_t)$		
$Q_{lq}^{\left(1 ight) }$	$(ar{l}_p\gamma_\mu l_r)(ar{q}_s\gamma^\mu q_t)$	Q_{eu}	(\bar{e}_p)	$\gamma_{\mu}e_{r})($	$(ar{u}_s \gamma^\mu u_t)$	Q_{qe}	($ar q_p \gamma_\mu q_r) (ar \epsilon$	$ar{e}_s \gamma^\mu e_t)$		
$Q_{lq}^{(3)}$	$(ar{l}_p\gamma_\mu au^Il_r)(ar{q}_s\gamma^\mu au^Iq_t)$	Q_{ed}	$(ar{e}_p$	$\gamma_{\mu}e_{r})$	$(ar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	(6	$ar q_p \gamma_\mu q_r)(ar u$	$(u_s \gamma^\mu u_t)$		
		$Q_{ud}^{\left(1 ight) }$	$(ar{u}_p$	$\gamma_{\mu}u_{r})$	$(ar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$(ar{q}_p \gamma$	$_{\mu}T^{A}q_{r})(ar{u}% _{r})$	$(u_s \gamma^\mu T^A u_t)$		
		$Q_{ud}^{(8)}$	$(ar{u}_p\gamma_\mu)$	$\Gamma^A u_r)$	$(ar{d}_s \gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$	($ar q_p \gamma_\mu q_r) (ar q_p \gamma_\mu q_r)$	$ar{l}_s \gamma^\mu d_t)$		
						$Q_{qd}^{(8)}$	$(ar{q}_p \gamma$	$_{\mu}T^{A}q_{r})(a$	$ar{l}_s \gamma^\mu T^A d_t)$		
$8:(ar{L}R)(ar{R}L)+ ext{h.c.} \hspace{1cm} 8:(ar{L}R)(ar{L}R)+ ext{h.c.}$											
		$(ar{d}_s q_i)$		(1) quqd	$(ar{q}_p^j u_r) \epsilon_j$		_				
	- 1			(8) quqd	$(ar{q}_p^j T^A u_r) \epsilon_j$)				
				$l_{lequ}^{(1)}$	$(ar{l}_p^j e_r) \epsilon_j$						
				$Q_{lequ}^{(3)}$	$(ar{l}_p^j \sigma_{\mu u} e_r) \epsilon_j$	$_k(ar{q}_s^k\sigma^{\mu u}u_t)$)				

The Warsaw Basis

Write down all possible operators that new physics could induce

- Stay consistent with SM **symmetries**!
- Build from SM field content!

Lot's of tricks to eliminate redundant operators, e.g.

Integration-by-Parts (IBP)

$$(\partial_{\mu}\phi)\partial^{\mu}(\partial^{2}\phi) \leftrightarrow -\phi\partial^{4}\phi$$

Many equivalent bases – not all created equal go for least number of derivatives

$$\mathcal{L}_{SMEFT} \supset \mathcal{L}_{SM} + \frac{C_5}{\Lambda} \mathcal{O}^5 + \frac{C_6^i}{\Lambda^2} \mathcal{O}_i^6 + \frac{C_7^i}{\Lambda^3} \mathcal{O}_i^7 + \cdots$$

Warsaw Basis: 59 Operators ($\delta B = 0$, $\delta L = 0$)

Grzadkowski/Iskrzynski/Misiak/Rosiek (1008.4884)

$1:X^3$		$2:H^6$		$3:H^4D^2$				$5:\psi^2H^3+{ m h.c.}$		
Q_G	$f^{ABC}G_{\mu}^{A\nu}G_{\nu}^{B\rho}G_{\rho}^{C\mu}$	Q_H ($H^\dagger H)^3$	$Q_{H\square}$	(H^{\dagger})	$H)\square(H^{\dagger}H)$	I)	Q_{eH}	$(H^\dagger H)(ar{l}_p e_r H)$	
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A u}_{\mu} G^{B ho}_{ u} G^{C\mu}_{ ho}$			Q_{HD}	$H^{\dagger}D_{\mu}$	H) * $(H^{\dagger}I$	$O_{\mu}H$	Q_{uH}	$(H^\dagger H)(ar q_p u_r \widetilde H)$	
Q_W	$\epsilon^{IJK}W_{\mu}^{I\nu}W_{\nu}^{J\rho}W_{\rho}^{K\mu}$							Q_{dH}	$H(H^\dagger H)(ar q_p d_r H)$	
$Q_{\widetilde{W}}$	$\epsilon^{IJK} \widetilde{W}_{\mu}^{I\nu} W_{\nu}^{J\rho} W_{\rho}^{K\mu}$									
	$4:X^2H^2$		$: \psi^2 X E$	I + h.c.	+ h.c.		7	$7:\psi^2H^2D$		
Q_{HG}	$H^\dagger H G^A_{\mu u} G^{A\mu u}$	Q_{eW}	$(ar{l}_p\sigma^{\mu u}$	$(e_r) au^IHV$	$Q_{Hl}^{(1)}$		$(H^\dagger i \overleftrightarrow{D}_\mu H) (ar{l}_p \gamma^\mu l_r)$			
$Q_{H\widetilde{G}}$	$H^\dagger H \widetilde{G}^A_{\mu u} G^{A\mu u}$	Q_{eB}	$(ar{l}_p\sigma^\mu$	$(ar{l}_p\sigma^{\mu u}e_r)HB_{\mu u}$		$Q_{Hl}^{(3)}$			$_{\mu}^{I}H)(ar{l}_{p} au^{I}\gamma^{\mu}l_{r})$	
Q_{HW}	$H^\dagger H W^I_{\mu u} W^{I \mu u}$	Q_{uG}	$(ar{q}_p\sigma^{\mu u})$	$(T^A u_r)\widetilde{H}$	$G^A_{\mu u}$	Q_{He}	Q_{He}		$(H^\dagger i \overleftrightarrow{D}_\mu H) (ar{e}_p \gamma^\mu e_r)$	
$Q_{H\widetilde{W}}$	$H^\dagger H \widetilde{W}^I_{\mu u} W^{I \mu u}$	Q_{uW}	$(ar q_p \sigma^{\mu u} u_r) au^I \widetilde H W^I_{\mu u}$		$Q_{Hq}^{(1)}$			$\overrightarrow{O}_{\mu}H)(ar{q}_{p}\gamma^{\mu}q_{r})$		
Q_{HB}	$H^\dagger H B_{\mu u} B^{\mu u}$	Q_{uB}	$(ar q_p \sigma^{\mu u} u_r) \widetilde H B_{\mu u}$			$Q_{Hq}^{(3)}$			$(\bar{q}_p au^I \gamma^\mu q_r)$	
$Q_{H\widetilde{B}}$	$H^\dagger H \widetilde{B}_{\mu u} B^{\mu u}$	Q_{dG}	$(ar{q}_p\sigma^{\mu u})$	$T^A d_r) H$	$G^A_{\mu u}$	Q_{Hu}			${\stackrel{ ightarrow}{D}}_{\mu}H)({ar u}_p\gamma^{\mu}u_r)$	
Q_{HWB}	,	Q_{dW}	$(ar{q}_p\sigma^{\mu u}$	$d_r) au^I H V$	$W^I_{\mu u}$	Q_{Hd}		$(H^{\dagger}i\overleftarrow{I}$	$\overrightarrow{D}_{\mu}H)(ar{d}_{p}\gamma^{\mu}d_{r})$	
$Q_{H\widetilde{W}B}$	$H^\dagger au^I H \widetilde{W}^I_{\mu u} B^{\mu u}$	Q_{dB}	$(ar{q}_p\sigma^\mu$	$^{1 u}d_r)HB$	μυ	Q_{Hud} +	h.c.	$i(\widetilde{H}^{\dagger}L$	$(D_{\mu}H)(\bar{u}_{p}\gamma^{\mu}d_{r})$	
	$8:(\bar{L}L)(\bar{L}L)$	$8:(ar{R}R)(ar{R}R)$				$8:(ar{L}L)(ar{R}R)$				
Q_{ll}	$(ar{l}_p\gamma_\mu l_r)(ar{l}_s\gamma^\mu l_t)$	Q_{ee}	$(\bar{e}$	$(p\gamma_{\mu}e_{r})(ar{e}_{s})$	$_s\gamma^\mu e_t)$	Q_{le}	($ar{l}_p \gamma_\mu l_r) (ar{\epsilon}$	$(e_s \gamma^\mu e_t)$	
$Q_{qq}^{(1)}$	$(ar q_p \gamma_\mu q_r) (ar q_s \gamma^\mu q_t)$	Q_{uu}	(\bar{u}_i)	$_p\gamma_\mu u_r)(ar u_r)$	$_s\gamma^\mu u_t)$	Q_{lu}	($ar l_p \gamma_\mu l_r) (ar u$	$(s_s \gamma^\mu u_t)$	
$Q_{qq}^{(3)}$	$(ar{q}_p \gamma_\mu au^I q_r) (ar{q}_s \gamma^\mu au^I q_t)$	Q_{dd}	(\bar{d})	$(\bar{d}_p \gamma_\mu d_r) (\bar{d}_p q_\mu d_r)$	$(s\gamma^{\mu}d_t)$	Q_{ld}	($ar{l}_p \gamma_\mu l_r) (ar{d}$	$ar{l}_s \gamma^\mu d_t)$	
$Q_{lq}^{\left(1 ight)}$	$(ar{l}_p\gamma_\mu l_r)(ar{q}_s\gamma^\mu q_t)$	Q_{eu}	(\bar{e}_i)	$_{p}\gamma_{\mu}e_{r})(ar{u}_{s}$	$ar{u}_s \gamma^\mu u_t) \hspace{1cm} Q_{qe} \hspace{1cm} ar{q}$		$ar q_p \gamma_\mu q_r) (ar q_p \gamma_\mu q_r)$	$ar{e}_s \gamma^\mu e_t)$		
$Q_{lq}^{(3)}$	$(ar{l}_p \gamma_\mu au^I l_r) (ar{q}_s \gamma^\mu au^I q_t)$			$_{p}\gamma_{\mu}e_{r})(ar{d}_{s}%)=0$	$_s\gamma^\mu d_t)$	$Q_{qu}^{(1)}$ $(ar q$		$ar q_p \gamma_\mu q_r) (ar u$	$ar{u}_s \gamma^\mu u_t)$	
			$egin{array}{c c} egin{array}{c c} egin{array}{c c} ar{u}_p \gamma_\mu u_r \ ar{u}_p \gamma_\mu T^A u_r \ \end{array}$		$(s\gamma^{\mu}d_t)$	$Q_{qu}^{(8)}$	$(ar{q}_p\gamma_\mu T^Aq_r)(ar{u}_s\gamma^\mu T^Aq_r)$			
			$ \;(ar{u}_p\gamma_\mu$	$T^A u_r)(ar{d}$	$(s\gamma^{\mu}T^Ad_t)$	$Q_{qd}^{(1)}$	$(ar q_p \gamma_\mu q_r) (ar d_s \gamma^\mu d_t)$			
					$Q_{qd}^{(8)}$	$(ar{q}_p\gamma_p)$	$_{\mu}T^{A}q_{r})(a$	$ar{l}_s \gamma^\mu T^A d_t)$		
$8:(ar{L}R)(ar{R}L)+ ext{h.c.} \hspace{1cm} 8:(ar{L}R)(ar{L}R)+ ext{h.c.}$										
$\overline{Q_{ledq}} egin{array}{c} (ar{l}_{j}^{j}e_{r})(ar{d}_{s}q_{tj}) \end{array} egin{array}{c} Q_{quqd}^{(1)} & (ar{q}_{p}^{j}u_{r})\epsilon_{jk}(ar{q}_{s}^{k}d_{t}) \end{array}$										
$Q_{quqd}^{(8)} (ar{q}_p^i T^A u_r) \epsilon_{jk} (ar{q}_s^k T^A d_t)$										
			$Q_{lequ}^{(1)} \hspace{1cm} (ar{l}_p^j e_r) \epsilon_{jk} (ar{q}_s^k u_t)$							
			($Q_{lequ}^{(3)}$ ($ar{l}_p^j \sigma_{\mu u} e_r) \epsilon_j$	$_k(ar{q}_s^k\sigma^{\mu u}u_t$	<u>;</u>)			

Warsaw Basis: 59 Operators ($\delta B = 0$, $\delta L = 0$)

The Warsaw Basis

Write down all possible operators that new physics could induce

- Stay consistent with SM symmetries!
- Build from SM field content!

Lot's of tricks to eliminate redundant operators, e.g.

Integration-by-Parts (IBP)

$$(\partial_{\mu}\phi)\partial^{\mu}(\partial^{2}\phi) \leftrightarrow -\phi\partial^{4}\phi$$

Many equivalent bases – not all created equal go for least number of derivatives

$$\mathcal{L}_{SMEFT} \supset \mathcal{L}_{SM} + \frac{C_5}{\Lambda} \mathcal{O}^5 + \frac{C_6^i}{\Lambda^2} \mathcal{O}_i^6 + \frac{C_7^i}{\Lambda^3} \mathcal{O}_i^7 + \cdots$$

We focus at 1-loop/Dim-6 **4-Fermi** (Z-couplings better probed @ Z-Pole)

Grzadkowski/Iskrzynski/Misiak/Rosiek (1008.4884)

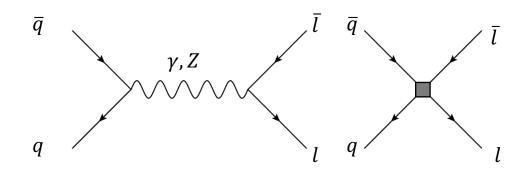
What's a flat direction?

- More Wilson coefficients than observables
- Either **exact** or **approximate** (in a certain regime)
- Severely limits possible bounds on individual coefficients

Flat Directions: Drell-Yan

What's a flat direction?

- More Wilson coefficients than observables
- Either **exact** or **approximate** (in a certain regime)
- Severely limits possible bounds on individual coefficients

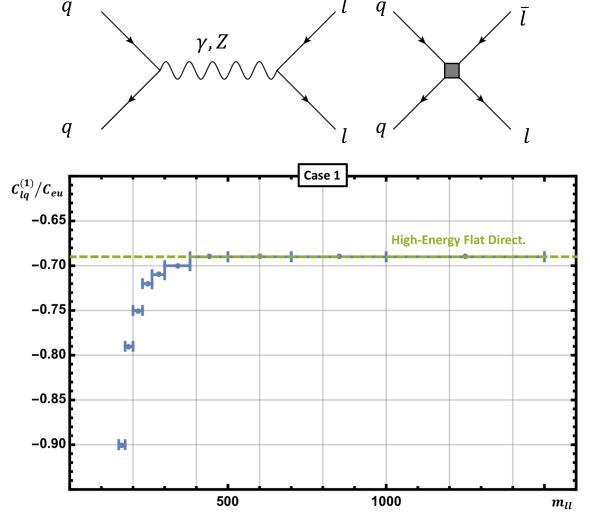

Example: **Drell-Yan** observables are only sensitive to a few combinations

Too many Wilson Coefficients: kinematic variable distributions show flat directions (e.g.: Rapidity , Lepton m_{ll} , ...)

Alte/König/Shepherd (1812.07575)

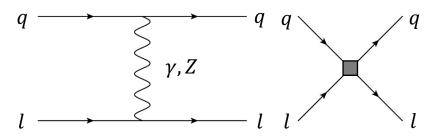
Flat Directions: Drell-Yan

What's a flat direction?


- More Wilson coefficients than observables
- Either exact or approximate (in a certain regime)
- Severely limits possible bounds on individual coefficients

Example: **Drell-Yan** observables are only sensitive to a few combinations

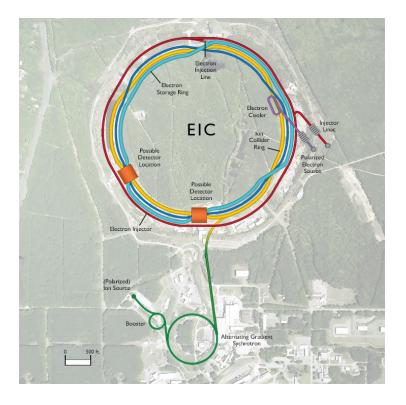
Too many Wilson Coefficients: kinematic variable distributions show flat directions (e.g.: Rapidity , Lepton m_{ll} , ...)


Flat Directions: Drell-Yan

Approximate flat-direction in Drell-Yan fit (high m_{ll} bins)

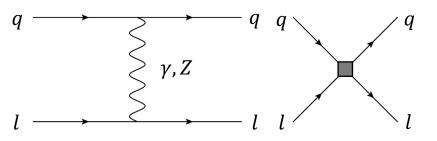
Alte/König/Shepherd (1812.07575)

Boughezal/Petriello/DW (2004.00748)



EIC - Overview

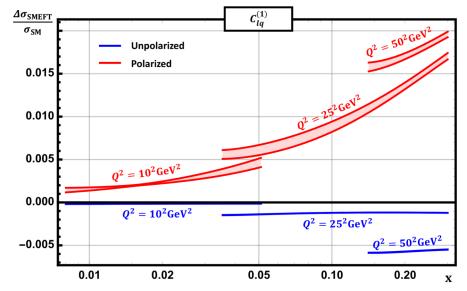
Standard Model and SMEFT contributions (here: **leading order**, NLO under control)


Technical assumptions of the analysis:

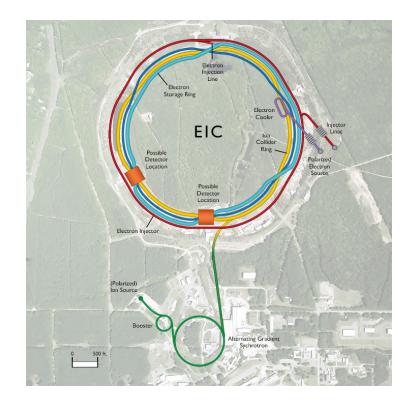
- CoM Energy up to $\sqrt{S}=140 {
 m GeV}$
- 70% Polarized electron and proton Beams
- Projected luminosity $\mathcal{L} \sim 10 \text{ fb}^{-1}$ (100 fb⁻¹?)
- Assume angular variable 0.1 < y < 0.9 and momentum fraction x < 0.2

https://www.bnl.gov/eic/

Aschenauer et al (1309.5327, 1705.08831)



EIC - Overview


Standard Model and SMEFT contributions (here: **leading order**, NLO under control)

Technical assumptions of the analysis:

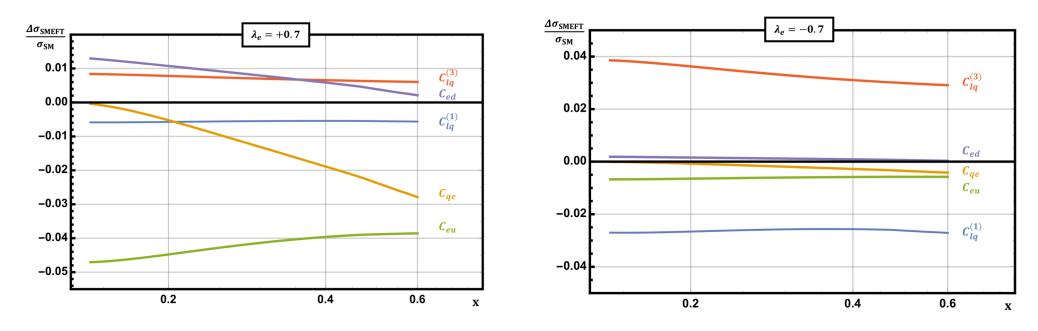
- CoM Energy up to $\sqrt{S}=140 GeV$
- 70% Polarized electron and proton Beams
- Projected luminosity $\mathcal{L} \sim 10 \text{ fb}^{-1}$ (100 fb⁻¹?)
- Assume angular variable 0.1 < y < 0.9 and momentum fraction x < 0.2

Expected size of SMEFT effect in DIS (including PDF error, $\Lambda=1$ TeV)

https://www.bnl.gov/eic/

Aschenauer et al (1309.5327, 1705.08831)

Probing SMEFT at EIC (I)

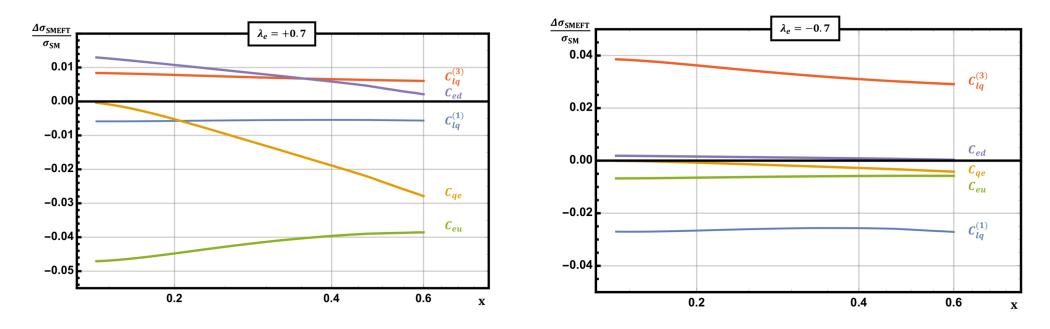

General Idea:

- Use different **combinations of polarized observables** to lift flat directions
- Observables: Polarized/Unpolarized Protons vs 2 Electron Polarizations
- Ultimate Goal: Simultaneous fit of PDFs AND Wilson Coefficients

Probing SMEFT at EIC (I)

General Idea:

- Use different **combinations of polarized observables** to lift flat directions
- Observables: Polarized/Unpolarized Protons vs 2 Electron Polarizations
- Ultimate Goal: Simultaneous fit of PDFs AND Wilson Coefficients

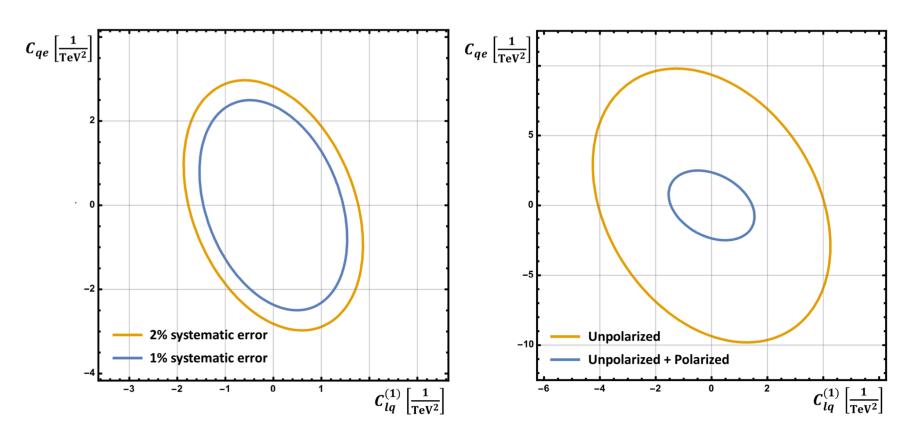


Different Wilson coefficients contribute for different electron polarizations

Probing SMEFT at EIC (I)

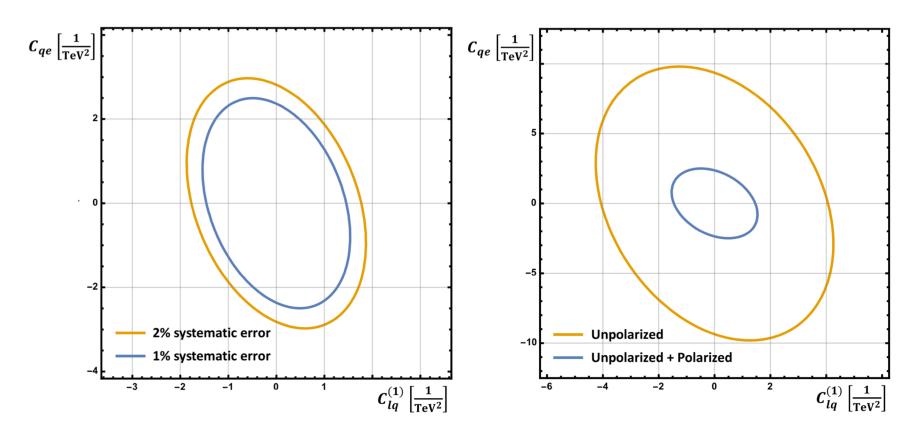
General Idea:

- Use different **combinations of polarized observables** to lift flat directions
- Observables: Polarized/Unpolarized Protons vs 2 Electron Polarizations
- Ultimate Goal: Simultaneous fit of PDFs AND Wilson Coefficients



Different Wilson coefficients contribute for different electron polarizations

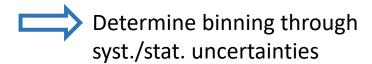
Additional Contribution: Charged Current $u e^- \to d \nu_e$ Signature not as clean but only sensitive to $C_{lq}^{(3)}$ (Off-shell W-analysis for Drell-Yan at LHC not available yet though)


Probing SMEFT at EIC (II)

Impact of Systematic Errors (left) and polarized proton beam data (right)

Probing SMEFT at EIC (II)

Impact of Systematic Errors (left) and polarized proton beam data (right)



- Takeaways to keep in mind:
- Polarized observables are crucial (even though larger experimental uncertainty)
- Impact of systematic error on bounds is fairly small
- **High** Q^2 **/High** x **bins** are most important (best SMEFT/SM ratio)

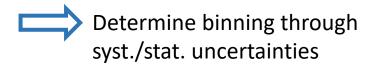
Fitting Methodology (68% CL):

For EIC/DIS:

- Integrate over (x, Q^2) bins

- Assume uncorrelated errors
- $\Delta\sigma_{SMFT}$ measures deviation from SM

Define χ^2 test statistic (DIS case):


$$\chi^2 = \sum_{\text{Bins Pol}/+} \left(\frac{\Delta \sigma_{SMFT}}{\Delta \sigma_{Err}} \right)^2$$

DY+EIC: Best Bounds Yet

Fitting Methodology (68% CL):

For EIC/DIS:

- Integrate over (x, Q^2) bins

- Assume uncorrelated errors
- $\Delta\sigma_{SMFT}$ measures deviation from SM

Define χ^2 test statistic (DIS case):

$$\chi^2 = \sum_{\text{Bins Pol}/\pm} \left(\frac{\Delta \sigma_{SMFT}}{\Delta \sigma_{Err}} \right)^2$$

For LHC/DY:

- Integrate over m_{ll} bins
- Error Correlation from ATLAS
- Data deviation from SM prediction

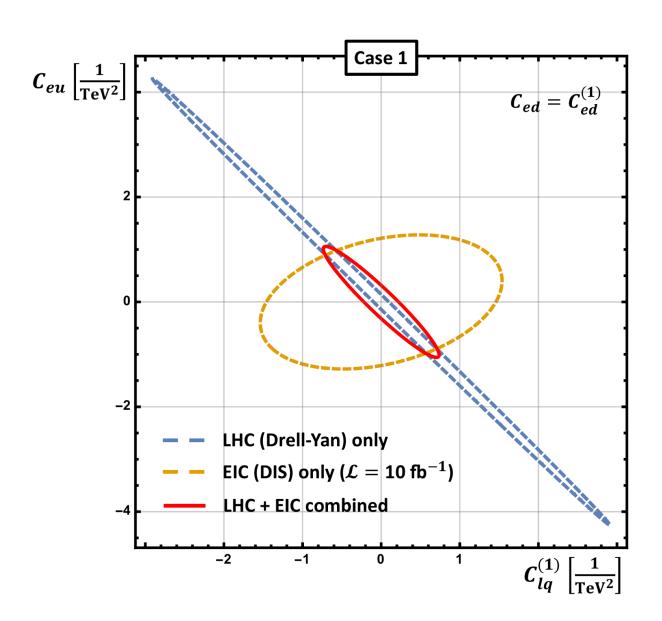
ATLAS Collab. (1606.01736)

DY+EIC: Best Bounds Yet

Fitting Methodology (68% CL):

DY+EIC: Best Bounds Yet

For EIC/DIS:


- Integrate over (x, Q^2) bins
 - Determine binning through syst./stat. uncertainties
- Assume uncorrelated errors
- $\Delta\sigma_{SMFT}$ measures deviation from SM

Define χ^2 test statistic (DIS case):

$$\chi^2 = \sum_{\text{Bins Pol}/\pm} \left(\frac{\Delta \sigma_{SMFT}}{\Delta \sigma_{Err}} \right)^2$$

For LHC/DY:

- Integrate over m_{ll} bins
- Error Correlation from ATLAS
- Data deviation from SM prediction

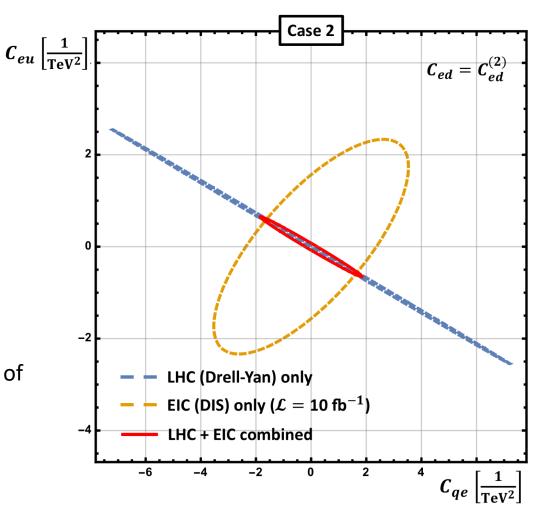
ATLAS Collab. (1606.01736)

Case 1 $C_{eu}\left[\frac{1}{\text{TeV}^2}\right]$ $C_{ed} = C_{ed}^{(1)}$ Drell-Yan DIS (10 fb $^{+1}$) DIS (100 fb^{-1}) $C_{lq}^{(1)} \left[\frac{1}{\text{TeV}^2} \right]$

Combined DY-DIS bounds:

- Luminosity increase only has moderate impact
- Correlation (= flat direction) is determined by degree of polarization of beam(s)
- EIC data tightens LHC bounds considerably!

DY+EIC: Best Bounds Yet


Case 1 $C_{eu}\left[\frac{1}{\text{TeV}^2}\right]$ $C_{ed} = C_{ed}^{(1)}$ Drell-Yan DIS (10 fb $^{+1}$) DIS (100 fb^{-1}) $C_{lq}^{(1)} \left[\frac{1}{\text{TeV}^2} \right]$

Combined DY-DIS bounds:

- Luminosity increase only has moderate impact
- Correlation (= flat direction) is determined by degree of polarization of beam(s)
- EIC data tightens LHC bounds considerably!

DY+EIC: Best Bounds Yet

Additional Drell-Yan flat direction can lifted analogously through EIC observables, e.g.:

Summary and Outlook

SMEFT is a practical framework to constrain new physics!

SMEFT suffers from a large number of flat directions

We presented a strategy to lift 4-Fermi flat directions

The future EIC will complement LHC data

Combine EIC observables with different polarizations additionally to LHC measurements

Interplay of different measurements improve bounds significantly

Summary and Outlook

SMEFT is a practical framework to constrain new physics!

SMEFT suffers from a large number of flat directions

⇒ We presented a strategy to lift 4-Fermi flat directions

The future **EIC** will complement LHC data

Combine EIC observables with **different polarizations** additionally to LHC measurements

Interplay of different measurements improve bounds significantly

Possible Future Directions:

- How to probe higher generation coefficients, e.g. C_{eu}^{2211} ? (COMPASS ($p+\mu^{\pm}$) might be starting point, but needs higher COM energy)
- $pp \rightarrow \mu^+\mu^-$ Drell-Yan bounds from LHC (Compare with SEAQUEST?)

Thank you!