Removing Flat Directions in SMEFT Fits: Complementing the LHC with polarized EIC data

Daniel Wiegand
Northwestern University/Argonne National Lab
@Electroweak and BSM Physics at the EIC

Based on:
Boughezal/Petriello/DW - (arXiv: 2004.00748)
The Why, the What and the How

- **the Why**
 - No smoking gun(s) at LHC
 - Standard Model Effective Theory (SMEFT) is a systematic way to combine and analyze data and look for New Physics in a model-independent way

- **the What**
 - Four-Fermi Operators are a large class of SMEFT operators
 - **Flat directions** are a prevalent problem → resolve before global fit

- **the How**
 - Future **Electron-Ion** Collider (EIC):
 - Lift flat directions by combining polarized observables
 - Combine with LHC data for strongest bounds (here: Drell-Yan)
Standard operating HEP procedure:

1) Pick BSM Model → 2) Make Prediction → 3) Compare to Data (ft Exclusion Plot) → GoTo 1)
SMEFT - Motivation

Standard operating HEP procedure:

1) Pick BSM Model → 2) Make Prediction → 3) Compare to Data (ft Exclusion Plot) → GoTo 1)

More Economic Way:

Average over heavy modes at SM energies (Effective Action: Wilson et al)

\[\frac{1}{\Lambda^2} + O\left(\frac{1}{\Lambda^4}\right) \]
SMEFT - Motivation

Standard operating HEP procedure:

1) Pick BSM Model
2) Make Prediction
3) Compare to Data (fit Exclusion Plot)
GoTo 1)

More Economic Way:

Average over heavy modes at SM energies (Effective Action: *Wilson et al*)

Quantify deviation from SM through comparison with data

- **Model independent constraints** on new physics
- Maximal gain from data
- Part of the **LHC legacy**

Non-SM operators **suppressed by powers of** $\frac{1}{\Lambda}$:

- Higher dimensional operators built from SM fields
- Modification of SM couplings/EWSB/...
Write down all possible operators that new physics could induce

- Stay consistent with SM symmetries!
- Build from SM field content!

Lot’s of tricks to eliminate redundant operators, e.g.

\[\partial_\mu \phi \partial^\mu (\partial^2 \phi) \leftrightarrow -\phi \partial^4 \phi \]
The Warsaw Basis

Write down all possible operators that new physics could induce

- Stay consistent with SM symmetries!
- Build from SM field content!

Lot’s of tricks to eliminate redundant operators, e.g.

\[
(p_{\mu}) p^\mu (\partial^2 \phi) \leftrightarrow -\phi \partial^4 \phi
\]

Many equivalent bases – not all created equal

\[
\mathcal{L}_{SMEFT} \supset \mathcal{L}_{SM} + \frac{C_5}{\Lambda} \mathcal{O}^5 + \frac{C_6^i}{\Lambda^2} \mathcal{O}_i^6 + \frac{C_7^i}{\Lambda^3} \mathcal{O}_i^7 + \cdots
\]

Warsaw Basis: 59 Operators ($\delta B = 0, \delta L = 0$)

Grzadkowski/Iskrzynski/Misiak/Rosiek (1008.4884)
The Warsaw Basis

- Stay consistent with SM symmetries!
- Build from SM field content!

Lot’s of tricks to eliminate redundant operators, e.g.

Integration-by-Parts (IBP) \((\partial_\mu \phi) \partial^\mu (\partial^2 \phi) \leftrightarrow -\phi \partial^4 \phi \)

Many equivalent bases – not all created equal

\[\mathcal{L}_{SMEFT} \supset \mathcal{L}_{SM} + \frac{C_5}{\Lambda} \mathcal{O}^5 + \frac{C_6}{\Lambda^2} \mathcal{O}^6_i + \frac{C_7}{\Lambda^3} \mathcal{O}^7_i + \cdots \]

We focus at 1-loop/Dim-6 4-Fermi
(Z-couplings better probed @ Z-Pole)
What’s a flat direction?
- More Wilson coefficients than observables
- Either exact or approximate (in a certain regime)
- Severely limits possible bounds on individual coefficients
What’s a flat direction?
- More Wilson coefficients than observables
- Either exact or approximate (in a certain regime)
- Severely limits possible bounds on individual coefficients

Example: **Drell-Yan** observables are only sensitive to a few combinations

Too many Wilson Coefficients: kinematic variable distributions show flat directions (e.g.: Rapidity, Lepton m_{ll}, ...)

Alte/König/Shepherd (1812.07575)
What’s a flat direction?
- More Wilson coefficients than observables
- Either **exact** or **approximate** (in a certain regime)
- Severely limits possible bounds on individual coefficients

Example: **Drell-Yan** observables are only sensitive to a few combinations

Too many Wilson Coefficients: kinematic variable distributions show flat directions (e.g.: Rapidity, Lepton m_ℓ, ...)

Approximate flat-direction in Drell-Yan fit (high m_ℓ bins)
Technical assumptions of the analysis:

- CoM Energy up to $\sqrt{S} = 140\text{GeV}$
- 70% Polarized electron and proton Beams
- Projected luminosity $\mathcal{L} \sim 10\text{ fb}^{-1}$ (100 fb^{-1}?)
- Assume angular variable $0.1 < y < 0.9$ and momentum fraction $x < 0.2$

Standard Model and SMEFT contributions (here: leading order, NLO under control)

https://www.bnl.gov/eic/

Aschenauer et al (1309.5327, 1705.08831)
EIC - Overview

Technical assumptions of the analysis:

- CoM Energy up to $\sqrt{S} = 140 \text{ GeV}$
- 70% Polarized electron and proton Beams
- Projected luminosity $\mathcal{L} \sim 10 \text{ fb}^{-1}$ (100 fb$^{-1}$?)
- Assume angular variable $0.1 < y < 0.9$ and momentum fraction $x < 0.2$

Expected size of SMEFT effect in DIS (including PDF error, $\Lambda = 1 \text{ TeV}$)

https://www.bnl.gov/eic/

Aschenauer et al (1309.5327, 1705.08831)
General Idea:
- Use different combinations of polarized observables to lift flat directions
- Observables: Polarized/Unpolarized Protons vs 2 Electron Polarizations
- Ultimate Goal: Simultaneous fit of PDFs AND Wilson Coefficients
Probing SMEFT at EIC (I)

General Idea:

- Use different **combinations of polarized observables** to lift flat directions
- Observables: Polarized/Unpolarized Protons vs 2 Electron Polarizations
- Ultimate Goal: **Simultaneous fit of PDFs AND Wilson Coefficients**

![Graphs showing different Wilson coefficients for different electron polarizations]
General Idea:
- Use different **combinations of polarized observables** to lift flat directions
- Observables: Polarized/Unpolarized Protons vs 2 Electron Polarizations
- Ultimate Goal: **Simultaneous fit of PDFs AND Wilson Coefficients**

Different Wilson coefficients contribute for different electron polarizations

Additional Contribution: Charged Current $u \; e^- \rightarrow d \; \nu_e$

Signature not as clean but only sensitive to $C_{lq}^{(3)}$

(Off-shell W-analysis for Drell-Yan at LHC not available yet though)
Probing SMEFT at EIC (II)

Impact of Systematic Errors (left) and polarized proton beam data (right)
Probing SMEFT at EIC (II)

Impact of Systematic Errors (left) and polarized proton beam data (right)

Takeaways to keep in mind:

- **Polarized observables** are crucial (even though larger experimental uncertainty)
- Impact of systematic error on bounds is fairly small
- **High Q^2/High x bins** are most important (best SMEFT/SM ratio)
Fitting Methodology (68% CL):

For EIC/DIS:
- Integrate over \((x, Q^2)\) bins
 - Determine binning through syst./stat. uncertainties
- Assume uncorrelated errors
- \(\Delta \sigma_{SMFT}\) measures deviation from SM

Define \(\chi^2\) test statistic (DIS case):

\[
\chi^2 = \sum_{\text{Bins}} \sum_{\text{Pol/\pm}} \left(\frac{\Delta \sigma_{SMFT}}{\Delta \sigma_{Err}} \right)^2
\]
Fitting Methodology (68% CL):

For EIC/DIS:
- Integrate over \((x, Q^2)\) bins
 - Determine binning through syst./stat. uncertainties
- Assume uncorrelated errors
- \(\Delta\sigma_{SMFT}\) measures deviation from SM

Define \(\chi^2\) test statistic (DIS case):

\[
\chi^2 = \sum_{\text{Bins}} \sum_{\text{Pol}/\pm} \left(\frac{\Delta\sigma_{SMFT}}{\Delta\sigma_{Err}}\right)^2
\]

For LHC/DY:
- Integrate over \(m_{ll}\) bins
- Error Correlation from ATLAS
- Data deviation from SM prediction

ATLAS Collab. (1606.01736)
Fitting Methodology (68% CL):

For EIC/DIS:
- Integrate over \((x, Q^2)\) bins
- Determine binning through syst./stat. uncertainties
- Assume uncorrelated errors
- \(\Delta\sigma_{SMFT}\) measures deviation from SM

Define \(\chi^2\) **test statistic** (DIS case):

\[
\chi^2 = \sum_{\text{Bins}} \sum_{\text{Pol/\pm}} \left(\frac{\Delta\sigma_{SMFT}}{\Delta\sigma_{Err}}\right)^2
\]

For LHC/DY:
- Integrate over \(m_{ll}\) bins
- Error Correlation from ATLAS
- Data deviation from SM prediction

ATLAS Collab. (1606.01736)
Combined DY-DIS bounds:

- Luminosity increase only has moderate impact
- Correlation (= flat direction) is determined by degree of polarization of beam(s)
- EIC data tightens LHC bounds considerably!
Combined DY-DIS bounds:

- Luminosity increase only has moderate impact
- Correlation (= flat direction) is determined by degree of polarization of beam(s)
- EIC data tightens LHC bounds considerably!

Additional Drell-Yan flat direction can lifted analogously through EIC observables, e.g.:
SMEFT is a practical framework to constrain new physics!

SMEFT suffers from a large number of flat directions

- We presented a strategy to lift 4-Fermi flat directions

The future EIC will complement LHC data

- Combine EIC observables with different polarizations additionally to LHC measurements
- Interplay of different measurements improve bounds significantly
SMEFT is a practical framework to constrain new physics!

SMEFT suffers from a large number of flat directions

We presented a strategy to lift 4-Fermi flat directions

The future EIC will complement LHC data

Combine EIC observables with different polarizations additionally to LHC measurements

Interplay of different measurements improve bounds significantly

Possible Future Directions:

- How to probe higher generation coefficients, e.g. C_{ee}^{2211}? (COMPASS $(p + \mu^\pm)$ might be starting point, but needs higher COM energy)

- $pp \rightarrow \mu^+\mu^-$ Drell-Yan bounds from LHC (Compare with SEAQUEST?)

Thank you!