Physics Working Group: overview and progress report

A. Dumitru, O. Evdokimov, A. Metz, C. Muñoz Camacho (input from all physics working groups)

Physics WG subgroups conveners

- Inclusive
- Th: Nobuo Sato (JLab)
- Exp: Renee Fatemi (Kentucky), Barak Schmookler (Stony Brook)
- h SIDIS
- Th: Alexey Vladimirov (Regensburg), Bowen Xiao (CCNU, China)
- Exp: Ralf Seidl (RIKEN), Justin Stevens (W&M), Anselm Vossen (Duke)
- Jets, heavy quarks
- Th: Frank Petriello (Argonne & Northwestern U.), Ivan Vitev (LANL)
- Exp: Leticia Mendez (ORNL), Brian Page (BNL), Ernst Sichtermann (LBL)
- Exclusive
- Th: Tuomas Lappi (Jyvaskyla), Barbara Pasquini (Pavia)
- Exp: Raphaël Dupré (Orsay), Salvatore Fazio (BNL), Daria Sokhan (Glasgow)
- Diffractive & Tagging
- Th: Wim Cosyn (Florida), Anna Stasto (PSU)
- Exp: Or Hen (MIT), Doug Higinbotham (JLab), Spencer Klein (LBNL)

Charge for Pavia Workshop

Straw-man plan of attack:

- a. Review previous existing work related to your subgroup. b.Converge on a set of important and representative measurements for your subgroup.
- Presented at the Temple meeting

- c. Break-down physics deliverables into "physics objects" (PO) [electron, hadron (ID/noID), muon, jet]; map out kinematics for each PO.
- d.Cross-check PO maps across physics subgroups to determine the most challenging constraints in terms of detector design; resolve overlaps [decide who runs what].
- e. Focus on fast simulations for the most demanding measurements first; determine the optimal/acceptable detector performance; confirm/check resulting impact on the rest of the measurements

Simulation baseline parameters

Based on the current BNL design, we suggest, as a starting point for our physics simulations, to study one or several of the following beam energy combinations:

р-е	275 on 18 GeV	100 on 10 GeV	100 on 5 GeV	41 on 5 GeV
d/ ³ He/ ⁴ He-e	110 on 18 GeV	110 on 10 GeV		41 on 5 GeV
C/40Ca/Cu-e	110 on 18 GeV	110 on 10 GeV		41 on 5 GeV
Au-e	110 on 18 GeV	110 on 10 GeV		41 on 5 GeV

(For nuclei the energy refers to the energy per nucleon)

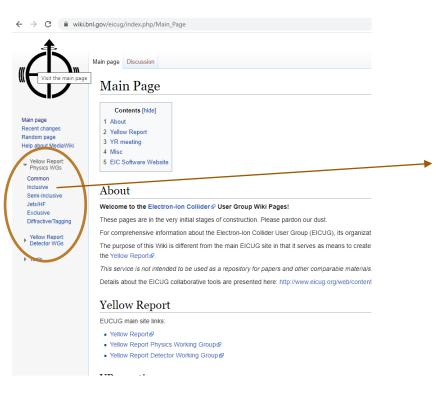
Please assume integrated luminosities of 10 fb⁻¹ and 100 fb⁻¹

A polarization of 70% may be assumed for electrons and light ions

Simulation Tools and Information Flow

- To ensure reproducibility of YR studies and consistency across simulations for different processes/working group, the prefered solution is to converge on a single simulation tool (for each detector region): EIC-smear, EICRoot
- Coordination with Software team to establish versioning/coherent implementation of Detector response parametrizations
- Have a common data-exchange format for kinematic maps

 https://wiki.bnl.gov/eicug/index.php/Yellow_Report_Physics_Common#Standard_histogram_to_display_kinematic_coverage


Exchanges with DWG

- ✓ Document studies/results in the wiki: https://wiki.bnl.gov/eicug/index.php
- ✓ Send information to the detector group in order to update the interactive detector matrix

					Tracking		Elect	trons	π/Ι	K/p	HCAL	
η		Nomenclature	:	Resolution	Allowed X/X _O	Si-Vertex	Resolution σ _E /E	PID	p-Range (GeV/c)	Separation	Resolution σ _E /E	Muons
-6.9 to -5.8			low-Q2 tagger	<u>σθ/θ < 1.5%; 10-6 <</u> <u>Q2 < 10-2 GeV2</u>								
	↓ p/A	Auxiliary										
-4.5 to -4.0	*11	Detectors	Instrumentation to									
-4.0 to -3.5			separate charged particles from photons				2%/√E					
-3.5 to -3.0				σ _p /p ~ 0.1%⊕0.5%			270/VE					
-3.0 to -2.5				<u>ори « 0.140 — 0.340</u>								
-2.5 to -2.0			Backward Detector	<u>σ</u> _P /p 0.1%⊕0.5%		<u>TBD</u>	<u>2%/√E</u>		<u>≤ 7 GeV/c</u>		<u>~50%/√E</u>	
-2.0 to -1.5				<u>σ_p/p 0.05%⊕0.5%</u>			<u>7%/√E</u>	π suppression up				
-1.5 to -1.0				<u>орир отоз мерого м</u>			<u>7%/√E</u>	to 1:104				
-1.0 to -0.5						20 1 ()		12				
-0.5 to 0.0		Central Detector	Barrel	<u>σ_p/ρ</u>	~5% or less X	σ _{χγχ} ~ 20 μm, d _Q (z) ~d _Q (rΦ) ~ 20/p _T GeV			≤ 5 GeV/c	≥3σ		TBD
0.0 to 0.5				~0.05%×p+0.5%		<u>μm + 5 μm</u>						
0.5 to 1.0												
1.0 to 1.5				<u>σ_p/ρ</u>					≤ 8 GeV/c			
1.5 to 2.0 2.0 to 2.5			Forward Detectors	~0.05%×p+1.0%		TBD	<u>(10-12)%/√E</u>				~50%/√E	
2.5 to 3.0			norward Detectors			160			≤ 20 GeV/c		*30%/VE	
3.0 to 3.5				<u>σp/p ~ 0.1%×p+2.0%</u>					≤ 45 GeV/c			
3.5 to 4.0			Instrumentation to									
4.0 to 4.5			separate charged particles from photons									
		Auxiliary	Neutron Detection									
	↑ e	Detectors	Neutron Detection	<u>ointrinsic(t)/ t < 1%;</u>								
> 6.2			<u>Proton Spectrometer</u>	Acceptance: 0.2 < p _t <1.2 GeV/c								

YR Wikipages

▶ Tools

Measurement	Main Detector Requirements	Anticipated Plot	Physics Topic/goal	Hesponsible persons	Additional Comment
Ap. As for p. d. *No	Standard includes	$A_1,A_{\perp},g_{1,k,\perp},\Delta g$	Gluon & Quark Helicity and HT	TRA	Global fit with SEDES?
A_{pq}^{2} , A_{pq}^{2} for p_{i}	Standard includes	$\begin{array}{l} A_{2,1}^{L},\ A_{2,2}^{L},\\ F_{3,1}^{L},g_{3,2}^{LL},\\ F_{3,1}^{R},g_{3,1}^{R},\ (\Delta)s^{s} \end{array}$	Pol. & Uspel, errorge	TRA	Wat Stites de the Knote tagging channel?
de ^{lect} /dedg (inc. HQ) for p.d.	Number terlinier + leary quark	$F_{AA}^{inc,BQ}, F_{AA}^{inc,BQ}, g,$ d/a	Printe PDFs	THA	Clintal fit with SEDEST
de ^{SC} /dedy (inc. BQ) for A	Numbed industry t heavy quark	FT/FT &	Nuclear PDFs	TRA	
dr ^{NC} /dxdg (inc) for p. A	Standard inclusive	$\ell_{int}^{\infty, (0)}, \ell_{11}^{\infty, (0)}$	Sor-Inear QCD dynamics	TRA	Clisted IS with SEDEST
45 _v for d	Standard includes	$\sin^2(\theta_W)$	DSM & precision EW physics	TEA	Need ~100 0,11 CUFV via = → +7
de ^{NC} /dedple	Standard inclusive	Updated Fig.6 in FligsMod E 36.115018. Set CM energies	Lorentz and CPT Violating Effects	Longhi sort Sherrill	

The inclusive reactions group covers a wide range of physics chi-Standard model and CPT and Lorentz violating measurements.

The general workflow is illustrated on the right. Theory groups pri passed through a fast-simulation detector package that will provil and passed back to the theoretical groups for global fitting and in

Theoretical Interpolation Tables

A git repository has been set up to store the theoretical input table

Vertex Level Monte Carlo Simulatio

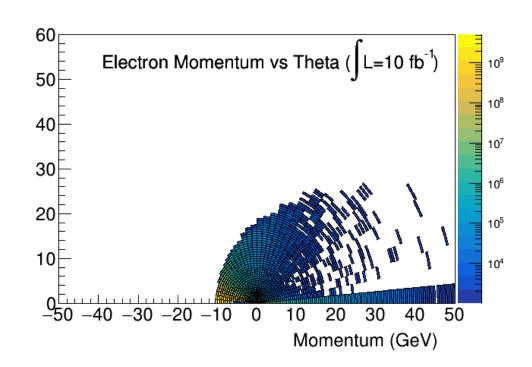
The IRG has identified three possible paths for vertex level simul electron/pion discrimination or the reconstruction of kinematic val existing resources so it will be the initial focus of the IRG. The we

path is to generate full-final-state simulations for each set of theoretical input. While this g uncovered.

A complete list of the available generators is compiled on the EIC simulations pages .

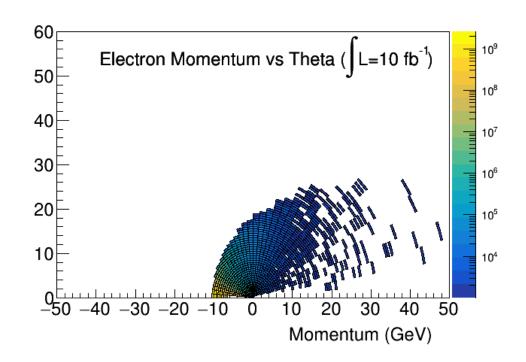
Inclusive physics working subgroup

Pavia YR Meeting Barak Schmookler, Nobuo Sato, Renee Fatemi

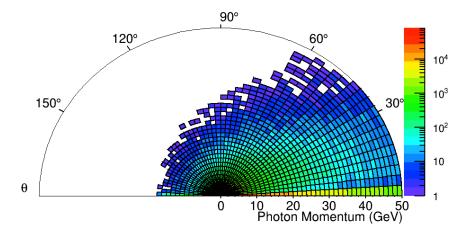

Summary of studied channels: kinematics

Note: Each kinematic map represents several physics channels

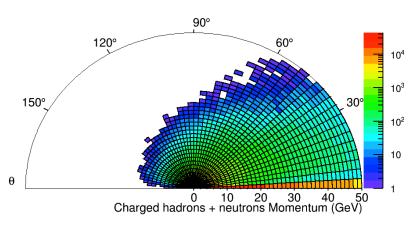
Measurement/ process	Main detector requirement	Expected YR plot	Physics goal/topic	Contact person	Comments
Neutral current e-p cross- sections and asymmetries	EMcal for e- energy, Tracker to reconstruct e- momentum and scattering angle, provide e/h discrimination (via E/p) and e+/e- separation	$\begin{array}{c} A_{ },A_{\perp},A^e_{PV} \\ g_{1,2},g^{YZ}_{1,5} \\ F_2,F_{L},F^{YZ}_{2,3} \\ \Deltag,g,\Deltas^+, \\ s^+ \\ \boldsymbol{\sigma^{NC}}_{red}, \\ sin^2\boldsymbol{\theta}_{w} \end{array}$	Gluon and quark proton momentum & helicity PDFs. Non-linear QCD dynamics.	Barak Schmookler	 ✓ e-p 10-100 e-p 5-41 e-p 5-100 e-p 18-275 e+/pion maps? e-A?
Charged current e-p cross-sections and asymmetries	EMcal, HCal and tracker for E and p of hadronic recoil. Need low thresholds and as forward as possible.	A ^h _{PV} , σ ^{Cc} _{red,} Δu/u, Δd/d, high x sbar	Polarized and unpolarized sea quark asymmetries	Xiaoxuan Chu	✓ e-p 18-275


Neutral Current: kinematics 10x100

- PYTHIA6, no radiative effects. All electrons, scattered + decay
- Largest yield is for electrons scattered backwards (toward the electron beam-pipe)
- Highest momentum electrons scatter at mid to mid-forward rapidity.
- High momentum electrons at large angle original from meson decay.

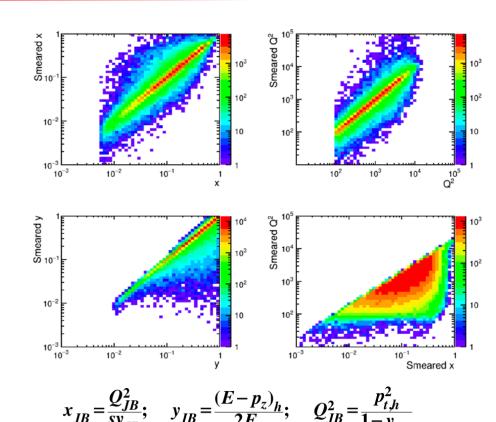

Neutral Current: kinematics 10x100

- PHYTHIA 6, no radiative effects.
 All electrons, scattered + decay
- Largest yield is for electrons scattered backwards (toward the electron beampipe)
- Highest momentum electrons scatter at mid to mid-forward rapidity.
- High momentum electrons at large angle original from meson decay. These are removed when looking at only the scattered beam electrons.



Charged Current: kinematics

- Highest momentum gamma go down the proton (+z) beamline
- Mid-range momentum photons from pion decay contribute in the forward (mid-forward eta) region.
- Peaked backward (-z) direction gamma come from e- radiation


- High momentum hadrons from the beam remnant go down the beampipe (+z)
- Fragmentation hadrons from scattered quark are produced at mid-range (midforward eta) region.
- Need detector to be pushed as far forward as possible.

Measurement /process	Main detector requirement	Expected YR Plot	Physics goal/topic	Contact person	Comments
Charged current e-p cross-section	EMcal, HCal and tracker for E _h and p _h of hadronic recoil. Need thresholds to be as low as possible and detectors extending as far forward as possible.	σ ^{Cc} _{red} , sbar	Sea quark distributions in the proton	Xiaoxuan Chu	Radiation, detector acceptance and PID effects studied. EIC smearing studies ongoing.
Neutral current e-p cross-section	EMcal for E _{e-} and tracker for p _{e-} , scattering angle, e/h discrimination (via E/p) and e+/e-separation	$\sigma^{ m Nc}_{ m red}$, g, d/u	Proton PDFs	Xiaoxuan Chu Barak Schmookler	Generator level cross-section and EIC-smear studies ongoing.
g ₂	Same at NC e-p cross-section	g ₂ (x) vs Q ²	Quark and gluon helicity and higher Twist	Matt Posik	Generator level cross-section comparison to theory.
A ^e _{PV}	Same as NC e-p cross-section	A ^e _{PV}	Polarized and unpolarized strange PDFs	Hanjie Liu	Generator level PID studies.

Charged Current Cross-section: smeared kinematics

- Work of Xiaoxuan Chu https://indico.bnl.gov/event/8389/
- Django e+p = 18 + 275 GeV, $\sqrt{s} = 141 \text{ GeV}$
- Radiative effects turned on.
- $L = 10 \text{ fb}^{-1}$, 0.01 < y < 0.95, $100 < Q^2 < 10^5 \text{ GeV}^2$.
- EIC Smear input:
 - Device SmearThetaHadronic(Smear::kTheta, "0.001");
 - HCAL -3.5 < η < -1.0 : sigma_E/E ~ 0.45/sqrt(E)+0.06
 - HCAL -1.0 < η < 1.0 : sigma_E/E ~ 0.85/sqrt(E)+0.07
 - HCAL $1.0 < \eta < 3.5$: sigma_E/E ~ 0.45/sqrt(E)+0.06
 - TRACKER -3.5 < η < -2.5 : sigma_p/p ~ 0.1% p+2.0%
 - TRACKER -2.5 < η < -1.0 : sigma_p/p ~ 0.05% p+1.0%
 - TRACKER -1.0 < η < 1.0 : sigma_p/p ~ 0.05% p+0.5%
 - TRACKER $1.0 < \eta < 2.5$: sigma_p/p ~ 0.05% p+1.0%
 - TRACKER $2.5 < \eta < 3.5$: sigma_p/p ~ 0.1% p+2.0%
- Reduced cross-section extracted using Jacquet-Blondel (JB) kinematic reconstruction

Semi-inclusive physics working subgroup

Pavia YR Meeting

Ralf Seidl (RIKEN), Justin Stevens (William & Mary), Alexey Vladimirov (Regensburg), Anselm Vossen (Duke), Bowen Xiao (Central Normal University)

Measurement /process	Main detector requirement	Expected plot for the YR	Physics goal/topic	Contact person				
Single hadron SIDIS	 η acceptance for hadrons angular resolution granularity of the detector (-1 <η< 4), π/K/p identification PID, Tracking, Δp/p, min p 	pseudo-3D Sivers function vs (x,kt) • Value of Tensor charge uncertainties, h1 vs x • Q2 dependence of Sivers function or Collins at fixed x	3D (x, kT) Sivers Function, TMD Evolution, test of Sivers at inter. x, Tensor charge via Collins	Alexey Vladimirov				
Comments: Use of existing simulations at Elke's group + smearing + weights originating from theorists, weights for Sivers								

Comments: Use of existing simulations at Elke's group + smearing + weights originating from theorists, weights for Sivers asymmetries prepared, Work on common database ongoing, integrate in SW environment, Theory work on fits/parameterizations. First impact studies for unpol.TMD and TMD evolution.

	<u> </u>			
Di-hadron	backward hadron	decorrelation	low x, Probe onset	Bowen Xiao
correlations	acceptance, sufficiently high	plot as in	of saturation	
in eA	resolution for the momentum	white paper	phenomena	
	(mainly high pT) and azimuthal			
	angle (need 2\pi coverage).			

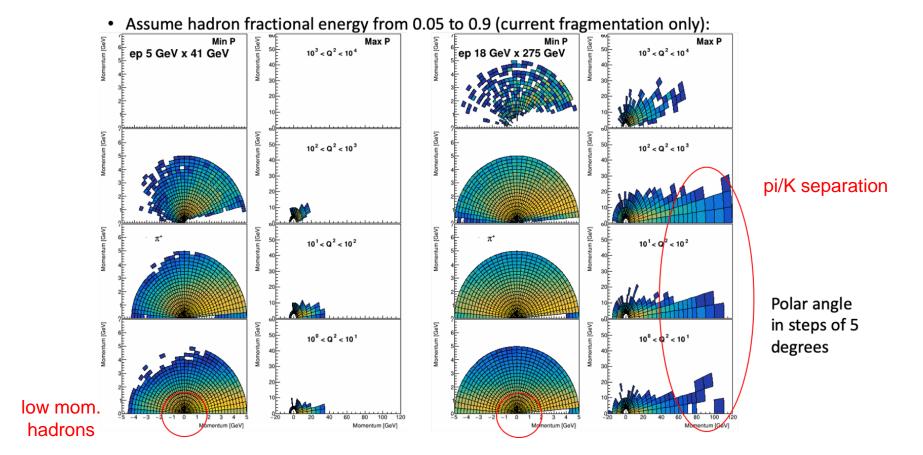
Comments: Continuation of work based on arXiv:1403.2413 with extension to jets with different algorithms using

Measurement/ process	Main detector requirement	Expected plot for the YR	Physics goal/topic	Contact person
Dijets and di- hadrons for Gluon Sivers	resolution for the momentum (mainly high pT) and azimuthal angle (2\pi coverage)	Size of the asymmetry as a function of x	Probing the size of the gluon Sivers function	Bowen Xiao

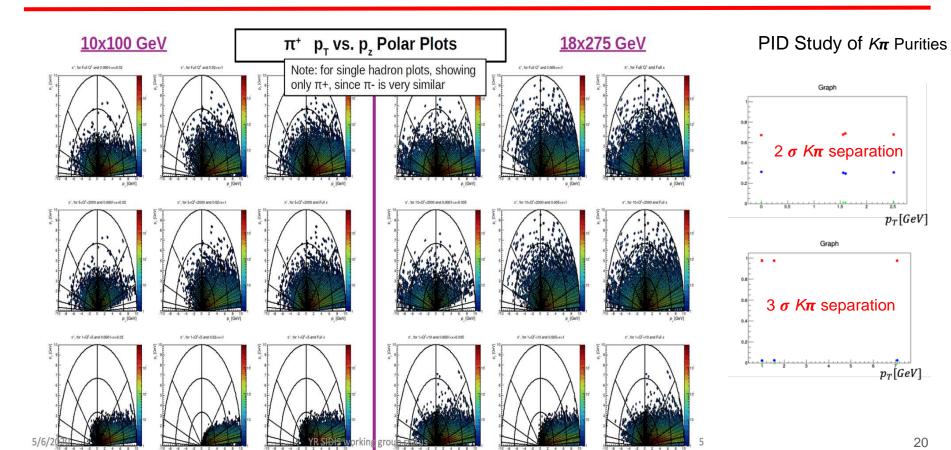
<u>Comments:</u> Continuation of study based on **arXiv:1805.05290** together with current EIC detector design

- consideration of different jet algorithms (Elke, Zheng, Lee and Yin)
- Possible different parameterizations of gluon Sivers function inputs from Pavia

Spectroscopy	 leptons from J/ψ displaced vertex and π/K separation for open charm 	Kinematic map of decay particles; mass resolution and sensitivity for $J/\psi\pi$, DD* final states	Representative spectroscopy channels : X, Y, J/ψππ, DD*	Justin Stevens
--------------	--	--	--	-------------------


<u>Comments:</u> Custom generators with theory input, eic-smear for mass resolution etc., Pythia background estimation

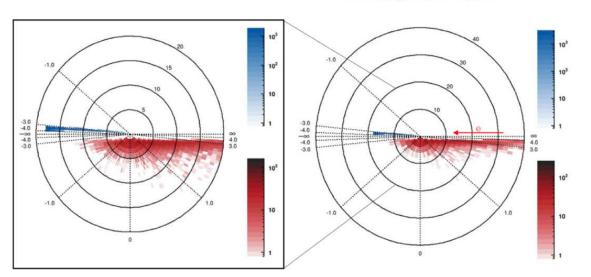
Measurement/ process	Main detector requirement	Expected plot for the YR	Physics goal/topic	Contact person
Sea quark helicity measurements	hadron momentum and energy resolution in forward direction (2 < η < 4) for CC events	Update of previous sea quark helicity PDF uncertainty plots	flavor separated (anti)quark helicity distributions over wide range of x	Ralf Seidl

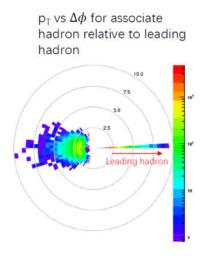

Comments: Work will follow ongoing sensitivity studies by Elke's group + Argentinian global fitters.

- Implementation of detector smearing, etc needs to be added to existing studies.
- Concentration on CC and D/3He.

Results for Single hadron SIDIS: kinematics

Results for Di-hadron Correlations: kinematics

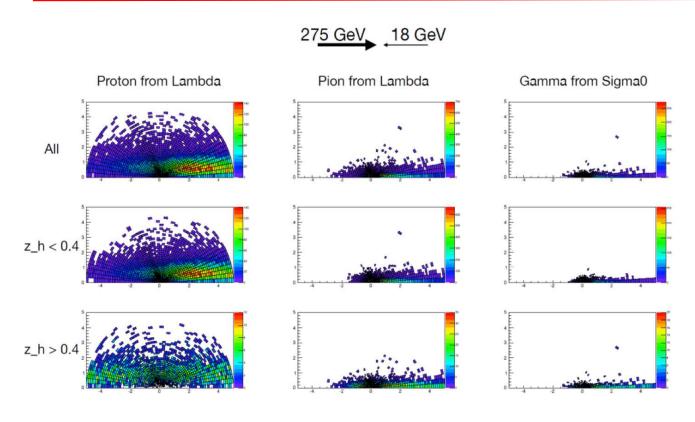



Results for Gluon Sivers: kinematics

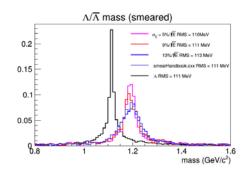
Gluon Sivers measurement requirement from charged dihadron channel

ep 18x275 GeV 0.01</br> 0.01 < y < 0.95, $1 < Q^2 < 2 \text{ GeV}^2$ charged hadron, $|\eta| < 4.5$, $p_T^* > 1.4 \text{ GeV}$, $z_h > 0.1$, $k_T^*/P_T^* < 0.7$, * indicates $\gamma^* p$ c.m.s frame

p vs η for scattered electron and charged hadron pairs

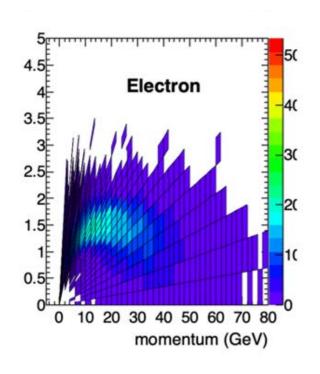

Results for Gluon Saturation: kinematics

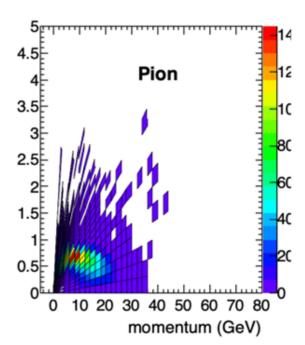
Gluon Saturation from charged dihadron channel

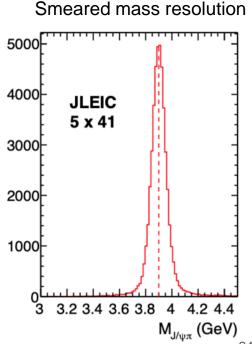

ep 18x110 GeV

```
0.6<y<0.8, 1<Q<sup>2</sup><2 GeV<sup>2</sup>
charged hadron, |\eta|<4.5, p_{T trig}*>2 GeV, p_{T assc}*>1 GeV,
0.2 < z_b < 0.4, * indicates \gamma*p c.m.s frame
                                                                      p vs \eta for scattered electron
                                                                      and charged hadron pairs
                                                                                                                                    p_T vs \Delta \phi for associate
                                                                                                                                    hadron relative to leading
                                                                                                                                    hadron
-3.0
-4.0
-00
-4.0
-3.0
```

Results for Hyperons: kinematics + smearing


Λ mass resolution and $\Sigma \to \Lambda \gamma$ feeddown




- In addition to the tracking smearing (handbook)
- Handbook setup push mass to larger side
- Lambda and sigma peak start merging at 3%/√E

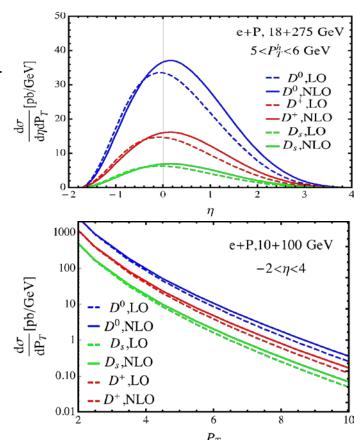
Results for Spectroscopy: kinematics + smearing

$$\gamma p \to Z_c^+ n \quad Z_c^+ \to J/\psi \pi^+$$

Jets and Heavy Flavor physics working subgroup

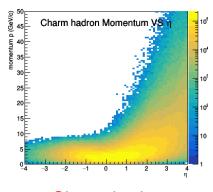
Pavia YR Meeting Leticia Cunqueiro, Brian Page, Frank Petriello, Ernst Sichtermann, Ivan Vitev

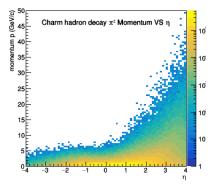
Measurement /process	Main detector requirement (if known/anticipated)	Expected plot for the YR	Physics goal/topic	Contact person	Comments
Open heavy flavor - Mesons - ∧ _c - Leptons - Displaced tracks	Momentum resolutions dp/p over 2-3% or better for invariant mass reconstruction; challenging B.dl in very forward region; Currently ideal PID assumed, to be investigated further; Several displaced vertex resolution studies ongoing (implications for pixel size)	Heavy meson modification vs fragmentation fraction z, Structure functions, e.g. F2-charm	Heavy flavor production, energy loss, hadronization Gluon content of the nucleon and nuclei	Prior JLab and BNL work, X. Li, X. Dong,	Nearing completion
Quarkonia / Exotics	Tracking performance consistent or better than the EIC handbook requirement. Good electron ID, muon ID	Quarkonium suppression vs p _T , rapidity	Quarkonium interactions in matter Threshold production	M. Durham	Nearing completion
Jet Angularity (Photoproduc tion)	High efficiency and resolution tracking. Calorimeter spatial resolution requirements need to be investigated	Shift in angularity spectrum for different detector configs	Cold nuclear matter effects; access to NP shape function; detailed Monte Carlo tuning	B. Page	Nearing completion

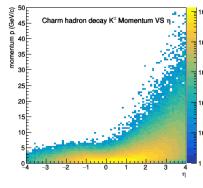

Results for open heavy flavor: kinematics

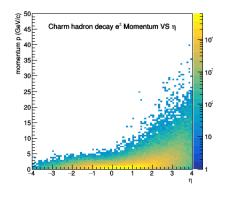
Kinematic distributions up to NLO where possible

Mid rapidity to forward coverage. For this measurement - moderate to high momenta

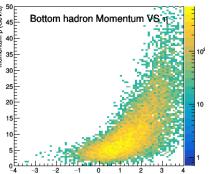

$$\theta = 2 \arctan[\exp(-\eta)]$$
 $p_T = \frac{p}{\cosh(\eta)}$


eta	theta [deg]	pT for p=10 [GeV]
0	90	10
1	40.4	6.5
2	15.4	2.7
3	5.7	1
4	2.1	0.4



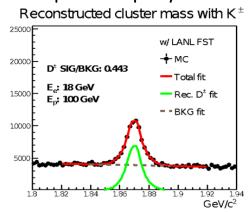

Results for open heavy flavor: kinematics

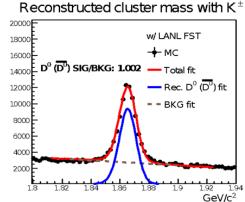
Example: Charm mesons through various decay channels (K, pi, semileptonic): 10 GeV electron + 100 GeV proton with integrated luminosity at 10 fb⁻¹. Minimum $Q^2 = 10$ (GeV/c)²

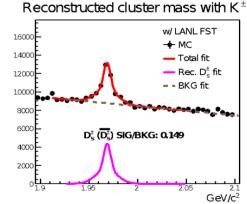

Charm hadrons

Decay products: pi, K, e

Have maps for various energy combinations. , also B mesons

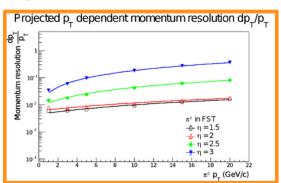

Mid rapidity to forward coverage. Moderate momenta going to high at forward angles


Bottom hadrons

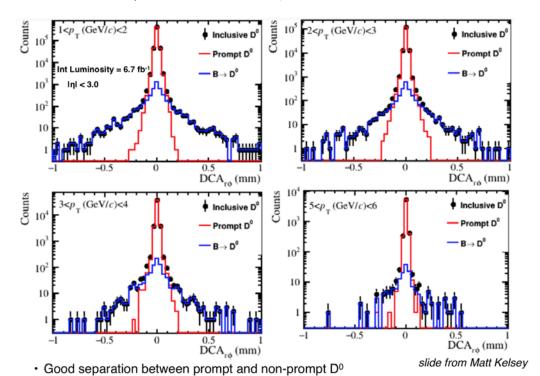


Results for D, B mesons: fast simulation

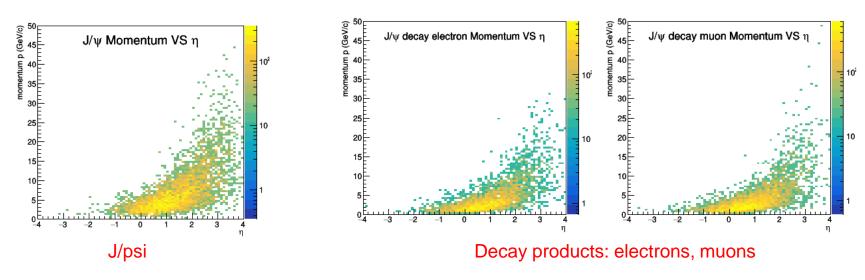
Example: in fast simulation 18 GeV electron + 100 GeV proton int. luminosity at 10 fb⁻¹. Track pseudorapdity cut: 1 to 3.



Assumption a hybrid design of MAPS (0.4% X_0) and HV-MAPs (0.8% X_0) - forward tracker


- Vertex spatial resolution smeared.
- Pseudorapidity dependent tracking momentum and spatial resolution smeared.
- 95% tracking efficiency.
- 100% PID identification.

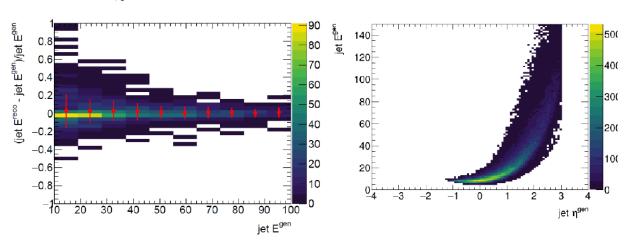
Results for B reconstruction with vertexing


Example: $DO \rightarrow k,pi$:

20 GeV electron + 100 GeV proton with integrated luminosity 10 fb⁻¹. Minimum $Q^2 = 1$ (GeV/c)² Momentum resolutions taken from Detector Matrix

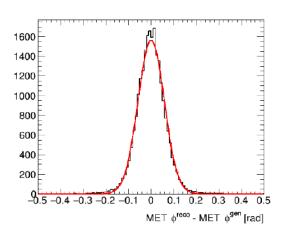
Results for quarkonia: kinematics

Example Charm through various decay channels (k,pi,semileptonic): 18 GeV electron + 275 GeV proton with integrated luminosity at 10 fb⁻¹. Minimum $Q^2 = 10 (GeV/c)^2$


Similar mid to forward rapidity distribution. Upsilon counts are much fewer

For this measurement - somewhat smaller energies/pT coverage than charm

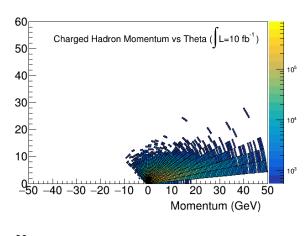
Jets for 3D imaging

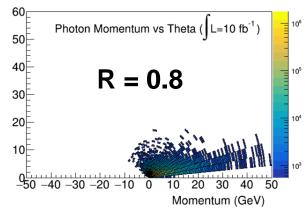

Jet performance

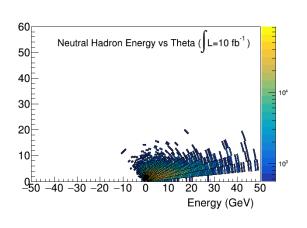
anti-kT R=1.0, particle-flow

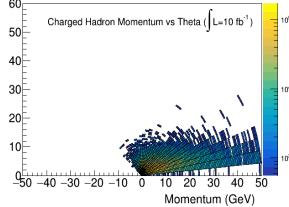
~20% at 10 GeV, ~10% at 50 GeV

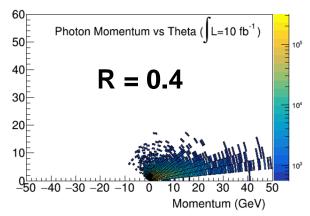
Neutrino φ -angle




 $^{\sim}$ 0.10 rad at 10 GeV, $^{\sim}$ 0.05 rad at 30 GeV


Results for Jet Angularity: Cuts


- \rightarrow Photoproduction Region: $10^{-5} \cdot Q^2 \cdot 1$ (0.01 · y · 0.95)
- Cluster all stable particles with |eta| < 3.5 (excluding scattered electron)</p>
- > Find jets using Anti-kT with R=0.8 and R=0.4; Only consider jets with pT > 10 GeV and |eta| < 3.5 R
- ➤ Note:
 - \circ Low Q^2 only, higher $Q^2 \rightarrow$ higher momentum particles
 - No cuts on minimum particle p_T or energy
 - \circ Lowering jet pT cut will enhance numbers of low momentum particles and extend range in negative eta
- Plot momentum (energy) vs theta for all charged hadrons, photons, and neutral hadrons in jets


Results for Jet Angularity: Kinematic Plots



Other channels

Measurement /process	Main detector requirement (if known/anticipated)	Expected plot for the YR	Physics goal/topic	Contact person	Comments
Heavy flavor jets		Heavy flavor jet cross sections /substructure	Heavy vs light flavor	P. Wong	Initial cross section simulations

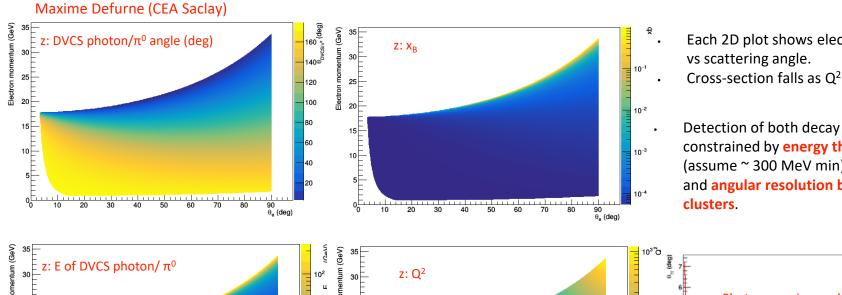
Exclusive physics working subgroup

Pavia YR Meeting Raphael Dupré, Salvatore Fazio, Tuomas Lappi, Barbara Pasquini, Daria Sokhan

Kinematic distributions have been studied and required coverages are available

Measurement/ process	Main detector requirement (if known/anticipated)	Expected plot for the YR	Physics goal/topic	Contact person	Comments
DVCS	Low t reach, forward h detection, full ϕ hermeticity, EM Calorimeter cluster resolution for π^0 subtraction	A _{UT}	3D imaging, Ji's sum rule, GPDs	M. Defurne, FX. Girod, S. Fazio	Study in progress
J/Ψ and other VMs in eA	p _T resolution for e [±] , μ [±] , hermiticity (rapidity gap), incoherent background suppression via forward instrumentation	dσ/dt	Saturation and shadowing, nGPDs	T. Ullrich	Study close to completion
Diffractive dijets	Jet p _⊤ resolution	dσ/dφ for different t , jet p_T	Elliptic gluon Wigner distribution	Z. Zhang	Study close to completion

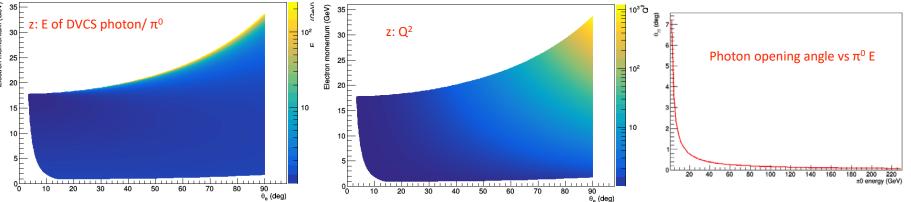
Kinematic distributions have been studied and required coverages are available

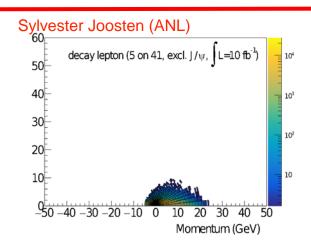

Measurement/ process	Main detector requirement (if known/anticipated)	Expected plot for the YR	Physics goal/topic	Contact person	Comments
Coherent DVCS on D, ³ He, ⁴ He	t acceptance in forward spectrometers	$d\sigma/dt$	Nuclear GPDs	R. Dupré, S. Fucini, S. Scopetta	Study ongoing
DVCS on neutron: double-tagging on d	ZDC acceptance, t resolution, spectator detection	$d\sigma/dt$	Neutron GPDs, flavour separation	A. Jentsch, B. Z. (Kong) Tu	Study close to completion
TCS and J/Ψ in ep	Lepton pair momentum resolution and acceptance in forward detectors	$d\sigma/dt$	GPDs, proton mass / trace anomaly	Y. Furletova, S. Joosten, J. Wagner (PARTONS)	Study close to completion

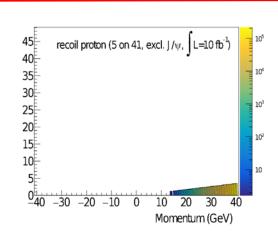
38

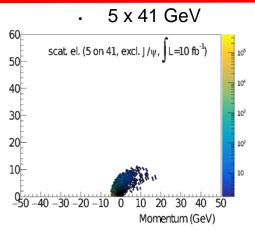
Kinematic distributions have been studied and required coverages are available

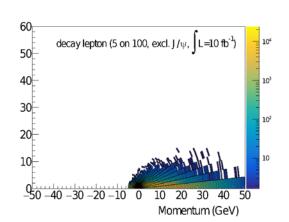
Measurement/ process	Main detector requirement (if known/anticipated)	Expected plot for the YR	Physics goal/topic	Contact person	Comments
Exclusive π ⁰ and π ⁺	PID, EM Calorimeter resolution, cluster separation for photons	$d\sigma/dt$	GPDs (chiral-odd and chiral- even), TDAs.	M. Defurne, FX. Girod, K. Tezgin (PARTONS), L. (Bill) Wenliang	Study ongoing
Charged current pion production	Actually a semi- inclusive process	$d\sigma/dt$	GPDs	M. Siddikov, I. Schmidt	Study near completion

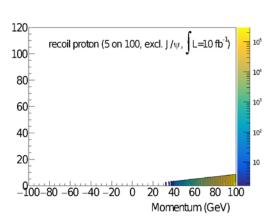

DVSC/ π 0 production: electron kinematics

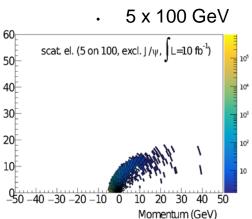

Each 2D plot shows electron momentum

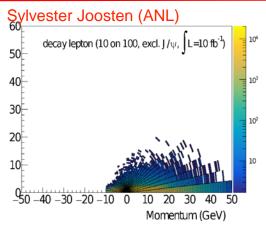

Cross-section falls as Q² rises.

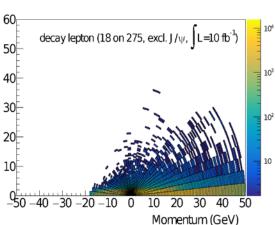

Detection of both decay photons constrained by energy threshold (assume ~ 300 MeV min) in calorimeter and angular resolution between

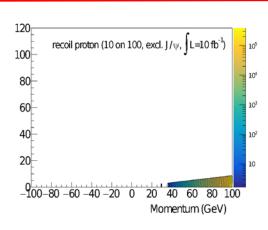


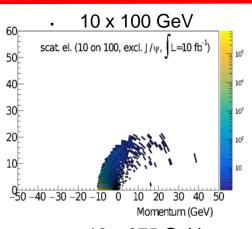

J/ψ production in e+p

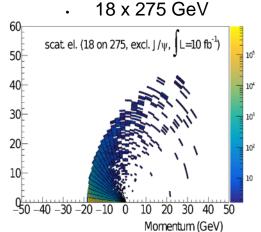


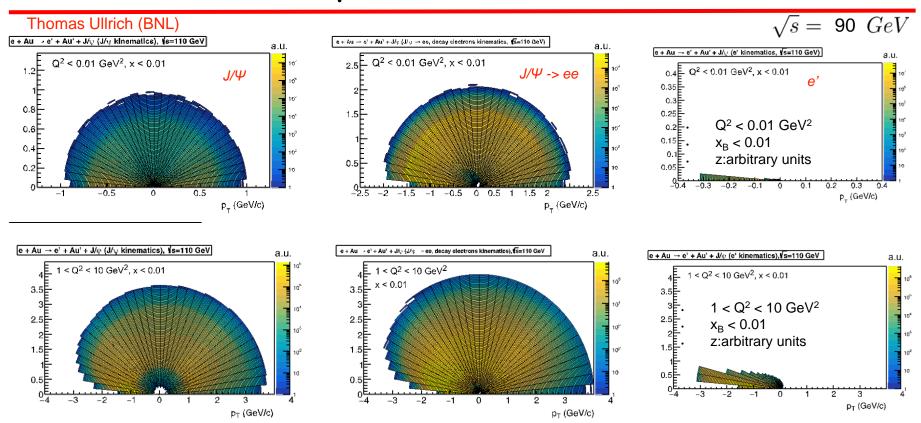


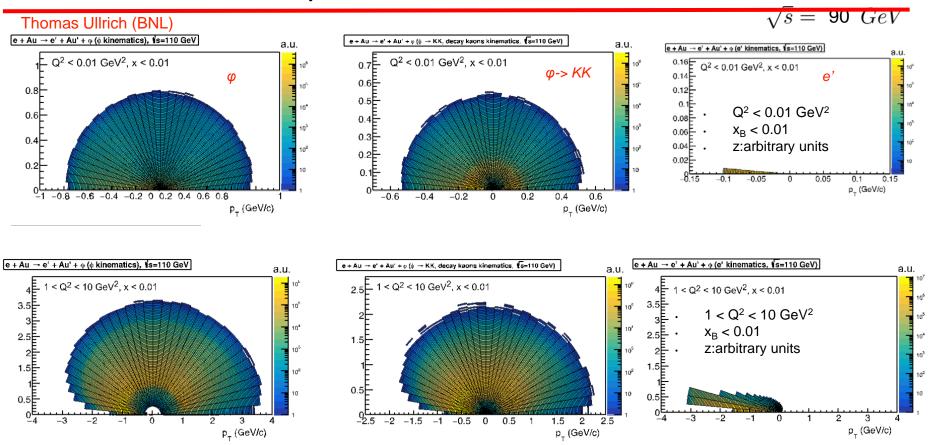


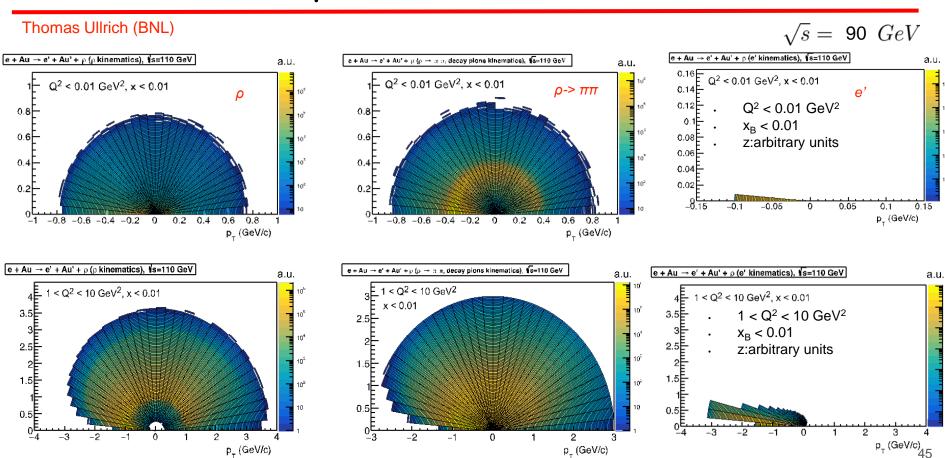


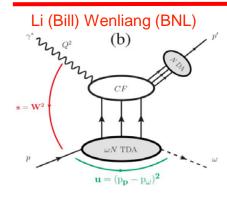

J/ψ production in e+p



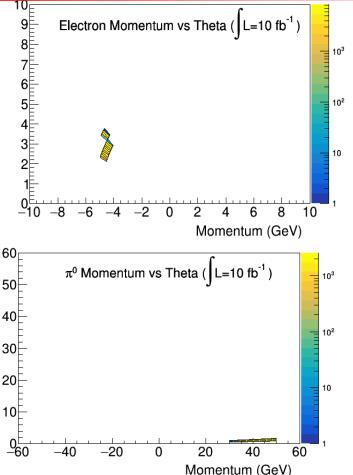


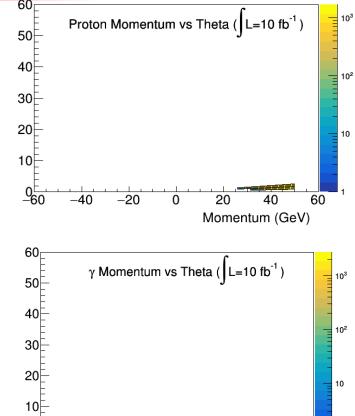



J/ψ production in e+Au


φ production in e+Au

ρ production in e+Au


U-channel πO production



Backward angle production of pi0 from proton: TDAs.

π0 mom: 20-50 GeV. π0 angle from above 50 to below 35mrad. Photon opening angle 0.4-0.8 deg.

. Q² < 12 GeV, W~ 10 GeV

20

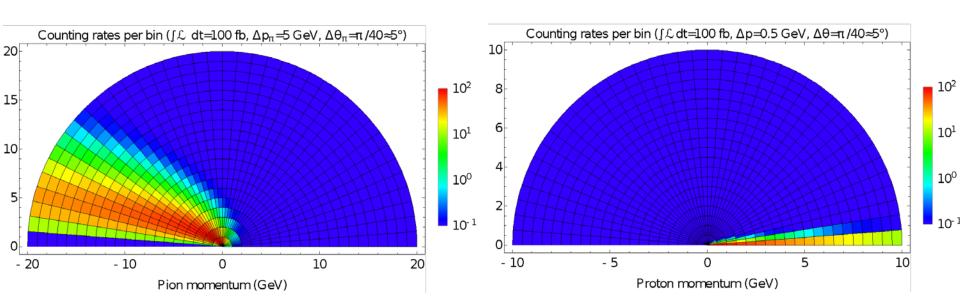
40

Momentum (GeV)

-20

0

60 46

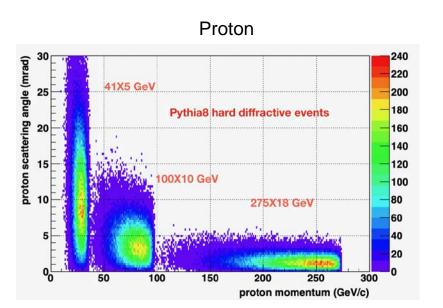

-60

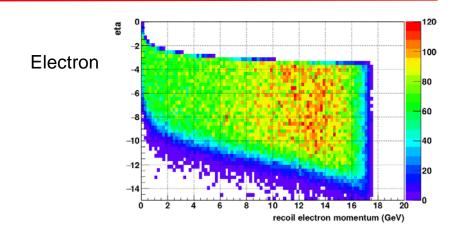
Charged current pion production

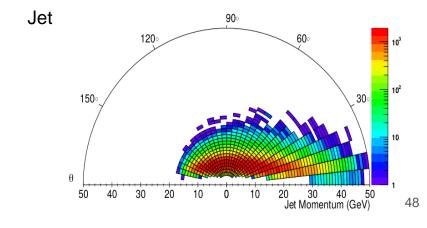
Marat Sidikov, (USM, Valparaiso, Chile)

Process is suppressed in comparison to DVMP, integrated luminosity for the plots is 100 fb⁻¹

$$ep \rightarrow \nu_e \pi^- p$$




Kinematic studies have been carried out on more channels – see weekly meeting slides on Indico!


Diffractive dijet production in e+p

Zhengqiao Zhang (BNL)

(Pythia8 ,Q²<1)

Other channels

Some of the channels which will be worked on but don't have kinematic distributions yet:

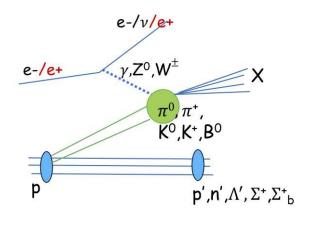
Measurement/ process	Main detector requirement (if known/anticipated)	Expected plot for the YR	Physics goal/topic	Contact person	Comments
Exclusive ϕ and ρ in ep and eA	PID for hadronic decay channels	$d\sigma/dt$	GPDs, gluon saturation	FX. Girod,	
Exclusive production of meson-photon pair (ργ)	Far-forward detectors	$d\sigma/dt$	GPDs	D. Sokhan	

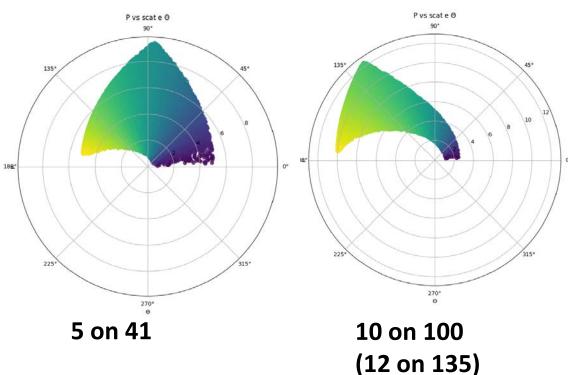
Diffraction and Tagging physics working subgroup

Pavia YR Meeting Wim Cosyn, Or Hen, Douglas Higinbotham, Spencer Klein, Anna Stasto

Measurement/pro cess	Main detector requirement (if known/anticipated)	Expected plot for the YR	Physics goal/topic	Contact person	Comments
Sullivan process ep/d -> e + pi/K/X + nucleon	-detection of forward p/n -detection of forward decay products of Λ,Σ -hadronic calorimetry in forward region	-pion and kaon SF projections a la HERA proton structure function plots -pion form factor at large Q ²	Meson structure	T.Horn	fast simulations in progress
ep/A-> e + X+p/A	Roman pot for leading protons	Roman pot acceptance, diffractive kinematics, structure function pseudodata, diffractive PDFs	diffractive structure functions and PDFs in protons and nuclei	N.Armes to P.Newma n,W.Slom inskiA.St asto	To do: PDFs in nuclei

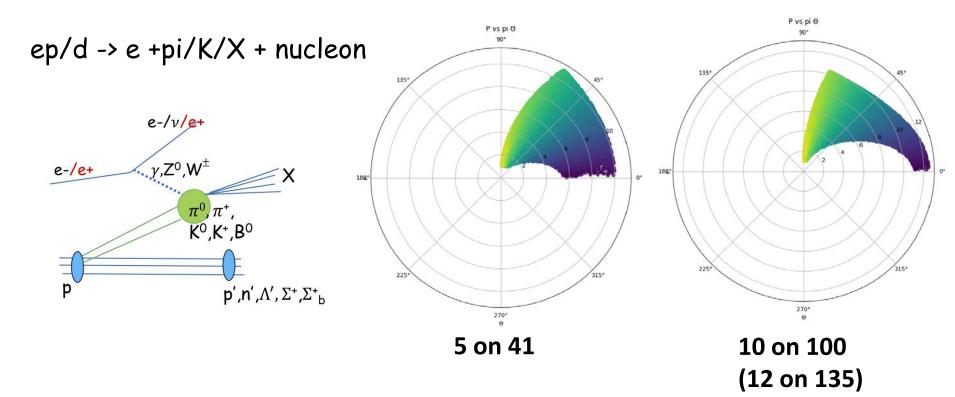
Measurement/pr ocess	Main detector requirement (if known/anticipate d)	Expected plot for the YR	Physics goal/topic	Contact person	Comments
ep/A-> e + VM+rapidity gap+Y inelastic diffraction of vector mesons	excellent acceptance for forward region for measurement of large rapidity gaps	cross section growth with rapidity gap size, dependence on t, angular vs pT acceptance	Pomeron trajectory, energy and t- dependence of the cross section on the rapidity gap size	M. Deak, M.Strikman, A.Stasto	To do: angular acceptance plots, simulations
Electro/Photo- production J/ψ Upsilon 15, 25, 35	Central Detector Scattered Electron Forward Detector for nuclear fragments to separate coherent/incoherent	Gluon distributions as a function of x and b_{\perp}	Gluon Dist. 3D Gluon imaging	S. Klein S. Heppelmann	ep 18X100, 100×250 eA 18×100

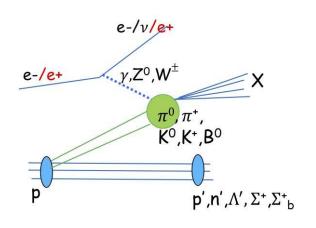

Measurement/pr ocess	Main detector requirement (if known/anticipated)	Expected plot for the YR	Physics goal/topic	Contact person	Comments
Diffractive deuteron breakup in J/ψ production	deuteron internal momenta up to 0.8-1 GeV/c can be detected with good acceptances and excellent resolutions with current far forward design	number of events vs p_miss with p and n spectators	Various: study is proxy for processes with single and double nucleon tagging in deuteron	Kong Tu Alex Jentsch	arXiv imminent
eA QE 2N knockout	Acceptance for far forward nucleons		SRC studies	F. Hauenstein	
e-p/d elastic scattering	small angle scattered electron detection	FF projections as a function of Q ²	elastic FF	B.Schmookler	

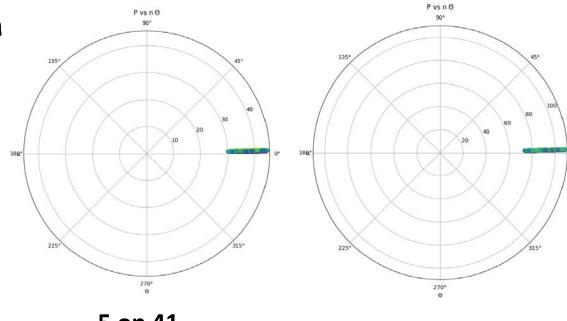

Summary of studied channels: fast simulations

Measurement/pr ocess	Main detector requirement (if known/anticipated)	Expected plot for the YR	Physics goal/topic	Contact person	Comments
Electro/Photo- production J/ψ Upsilon 15, 25, 35	Central Detector Scattered Electron Forward Detector for nuclear fragments to separate coherent/incoherent	Gluon distributions as a function of x and b⊥	Gluon Dist. 3D Gluon imaging	S. Klein S. Heppelmann	EICRoot Framework Detector Setups: LBNL All-Si BeAST
Diffractive deuteron breakup in J/ψ production	deuteron internal momenta up to 0.8-1 GeV/c can be detected with good acceptances and excellent resolutions with current design	number of events vs p_miss with p and n spectators	Various: study is proxy for processes with single and double nucleon tagging in deuteron	Kong Tu Alex Jentsch	arXiv imminent Beagle + current far forward detectors
eA QE 2N knockout	Acceptance for far forward nucleons		SRC studies	F. Hauenstein	Beagle + g4e

Meson Structure Functions - Scattered Electron

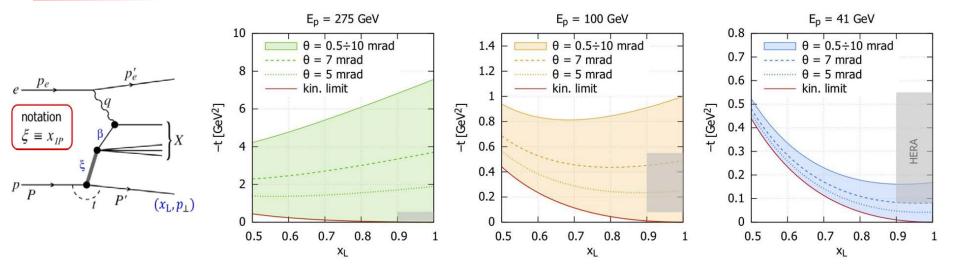

ep/d -> e +pi/K/X + nucleon


Kinematics for meson structure functions


Meson Structure Functions - Scattered Meson

Meson Structure Functions - Forward Baryon

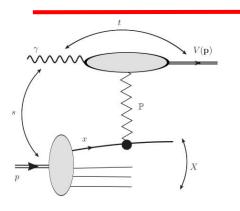
ep/d -> e +pi/K/X + nucleon



5 on 41

10 on 100 (12 on 135)

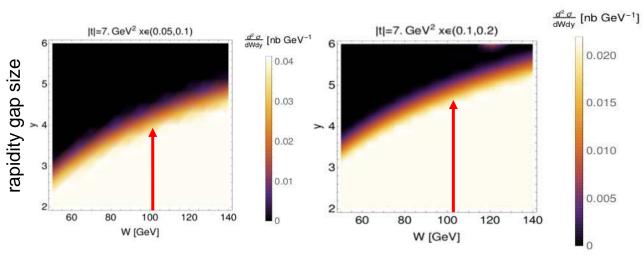
Inclusive diffraction: Roman pots acceptance


Outgoing proton momentum : (x_L, p_T) with $x_L P^+ = P^{'+}$

-t range up to 2 GeV² is necessary for reliable extraction of t-dependence of diffractive exchanges

Desired detector and machine features:

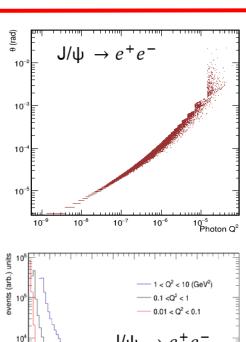
- Proton tagging angle: 0.5 to 7 mrad, for diffractive cross section measurement with t dependence
- Outgoing proton : x_L<0.6
- Additional intermediate energies needed for the precise longitudinal structure function measurement


Inelastic diffraction of vector meson: J/ψ

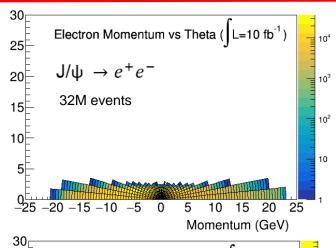
Need to access rapidity gaps between 2 to 4(4.5) to extract energy dependence and trajectory of Pomeron Possible, if good angular acceptance in forward region.

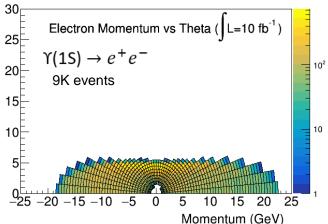
Preliminary estimates on angle and p_T

- For p_T =2.6 GeV, Θ =11° for x=0.05, gap up to 3.5 units rapidity
- For p_T =2.6 GeV, Θ =5.5° for x=0.1
- For p_T =2.6 GeV, Θ =2.75° for x=0.2, gap up to 4.5 units rapidity

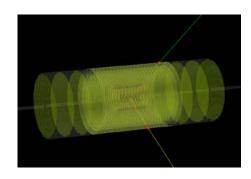

To do: angular acceptance plots, with mapping of rapidity gaps

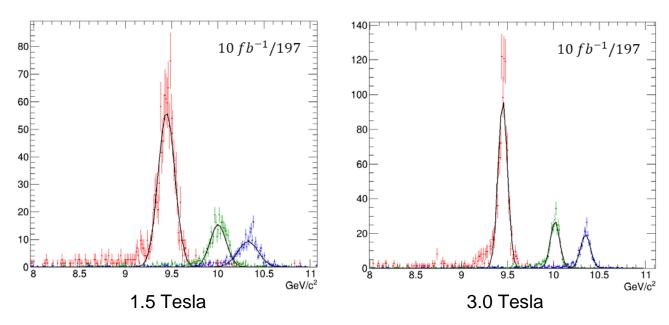
Vector Meson Photo/Electro-production: kinematics


e + p


Outgoing electron deflection angle:

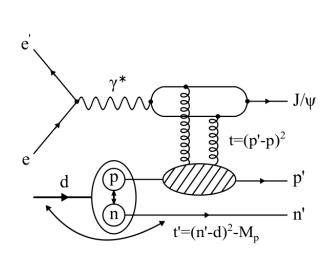
For photoproduction $(Q^2 < 1 \text{ GeV}^2)$

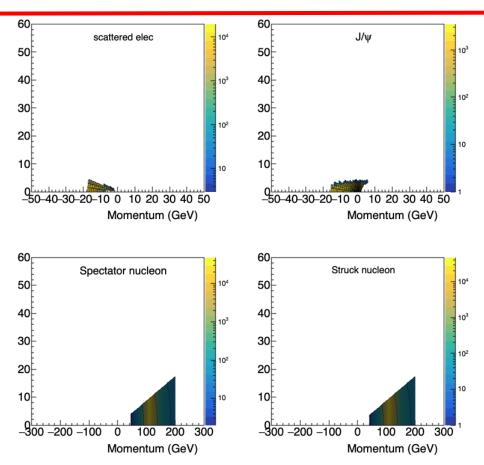


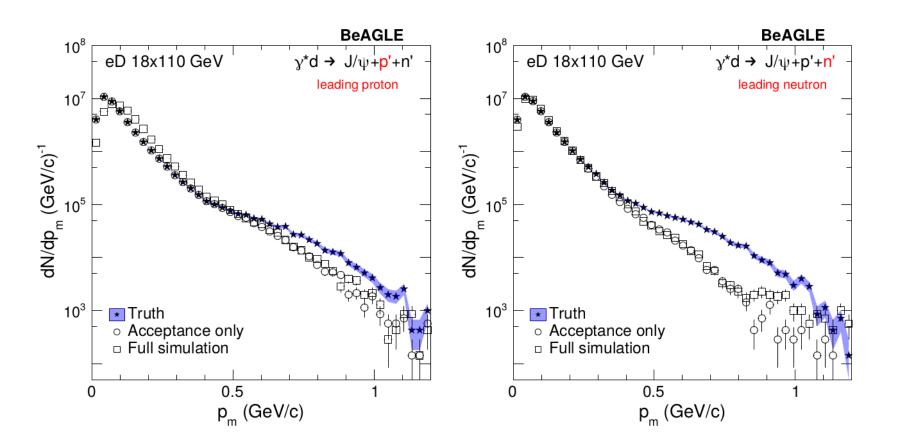

Upsilon Events in EICRoot All-Silicon Detector

LBNL All-Silicon Detector

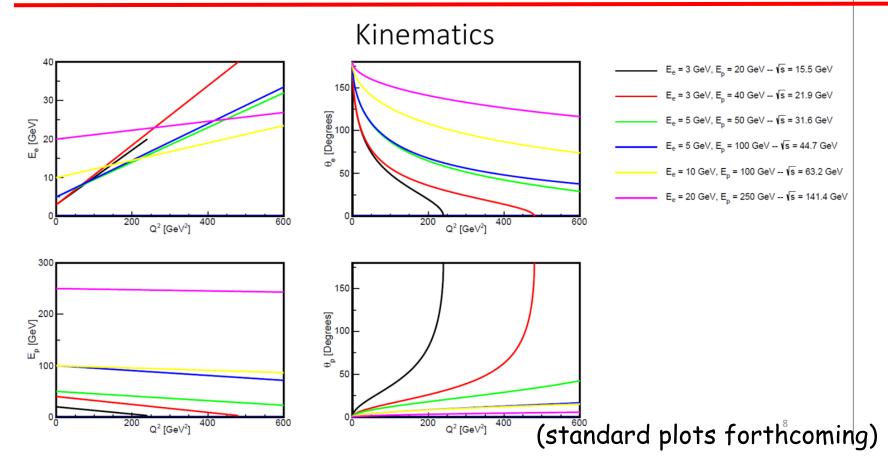
(Developed by LBNL's eRD16 generic EIC detector project)

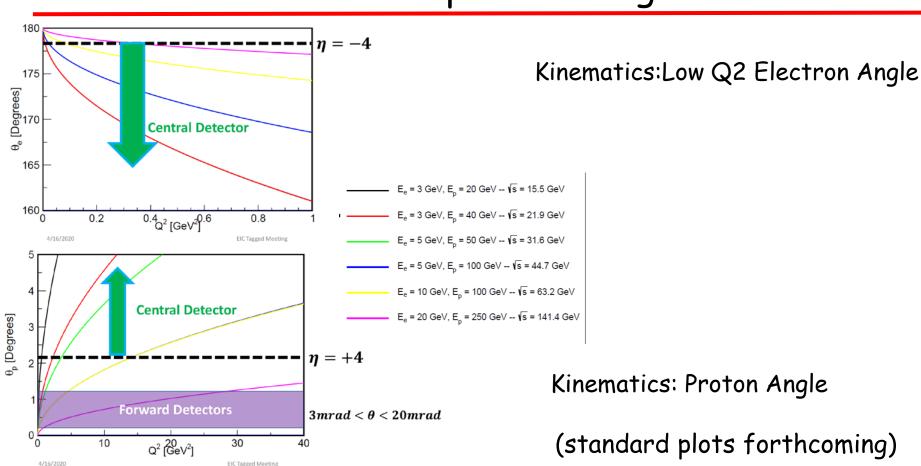

- Silicon Tracker6 layers
- Silicon Endcap Disks6 disks



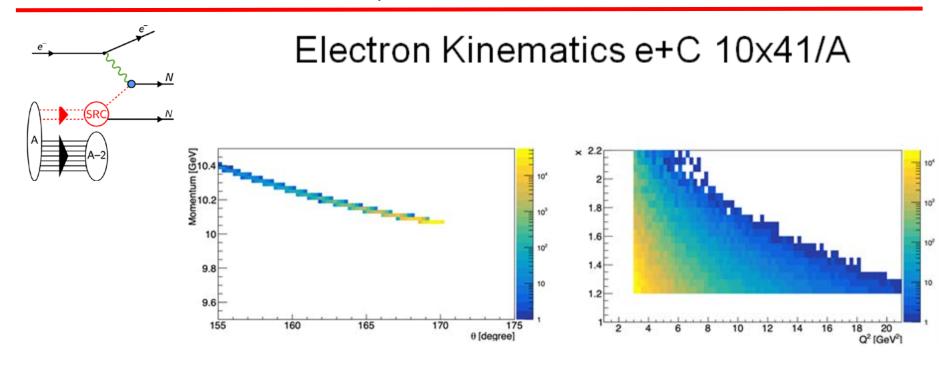

Upsilon peaks are still distinguishable with a lower B-Field

Diffractive deuteron breakup: $e+d \rightarrow e' + J/\psi + p + n$

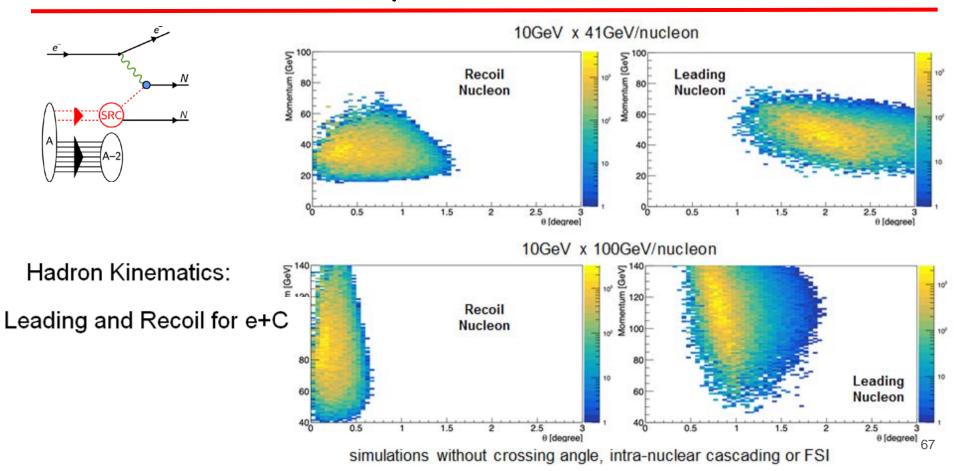



Beagle simulations

Elastic ep scattering


Elastic ep scattering

Kinematics: Proton Angle


(standard plots forthcoming)

eA QE 2N knockout

similar for e+C 10x100

eA QE 2N knockout

Other channels

Measurement/pro cess	Main detector requirement (if known/anticipated)	Expected plot for the YR	Physics goal/topic	Contact person	Comments
Hadron spectroscopy	central barrel tracking and calorimetry down to 100 MeV	Invariant mass distribution (state TBD)	exotic hadron spectroscopy (i. e. XYZ states)	TBD	
Bethe-Heidler	Acceptance for small- angle photons	elastic FF projections	(transition) FF measurements at variable energies exploiting initial state radiation	Ch. Hyde Ch. Weiss	kinematic plots forthcoming
Coherent production of VM in 4He scattering	0.01 < -t < 0.5 GeV ²	Evolution of t- dependence of VM production as a function of Q ²	Color transparency, rescattering, color opacity at various Q ² ,	M. Strikman	6

Other channels

Measurement/ process	Main detector requirement (if known/anticipated)	Expected plot for the YR	Physics goal/topic	Contact person	Comments
nucleon fragmentation e+p -> e+h(p,n,π)[TF]+X e+p ->e+h+π/dijet[CF]+X	Far forward: -p/n: x _L range down to 0.1; p _T range: 0 <p<sub>T <0.7 GeV/c -Delta production: detection of pions with xL range from 0.3 to 0.1</p<sub>	leading hadron cross sections as a function of xL (normalized to inclusive)	fracture functions, multiparton nucleon structure, formation time	M. Strikman	Double tagging: detecting π, K, charm, dijet in the current fragmentation region to separate processes with u,d,g
ep/A-> e + 2 jets + X + y	Roman pot for leading protons, forward neutron calorimeter for pion exchange, nuclei	Differential diffractive cross section for jet production, i.e. Figs. 5d, 6d; 8b and 9d from 2004.06972	diffractive PDFs in protons and nuclei, pion PDFs, nuclear excitation	M. Klasen V.Guzey	NLO calculations finished, must still optimise YR plot(s) Pass through simulations?

Summary

- Many channels are under study, progressing well
- Many kinematic maps for physics objects completed/near completion;
 cross-group cross-checks are next step (at/after Pavia)
- Fast simulations of many channels are well underway
- Initial constraints on detectors are starting to come out (and being communicated to the DWG)