Exclusive and Diffractive Physics in the Far-Forward Region

Alex Jentsch, *Brookhaven National Lab* 2nd Yellow Report Meeting @ Pavia (remote) May 20th-22nd, 2020

Electron Ion Collider

BROOKHAVEN

Far-Forward Region Layout

What has been studied?

- DVCS proton measurements (using MILOU).
 - Acceptances of protons in Roman Pots and B0.
 - Pt resolution and measurement of t-distribution.
 - All effects included (e.g. angular divergence, detector reconstruction, etc.).
 - Three energies (5x41 GeV, 10x100 GeV, 18x275 GeV).
- Spectator tagging of e+D nuclear breakup with BeAGLE (paper soon to be on arXiv).
 - Acceptance and resolutions for all 4 detectors.
 - All effects included.
 - Two energies (18x110 GeV, 18x135 GeV).

Review of DVCS results

[Detector	Angular Acce	ptance	Notes	
$\Delta p_{t,total} = \sqrt{(\Delta p_{t,AD})^2 + (\Delta p_{t,AD})^2}$	$(\Delta p_{t,CC})^2 + 0$	$(\Delta p_{t,pxl})^2$	Roman Pots	0.0 < θ < 5.0	mrad	Need 10ơ cut.	
)	B0 Sensors	5.5 < θ < 20.0) mrad Stil	need to optimize.	
Angular divergence	smearing from crab cavity rotation.	Smearing from finite pixel size.					
	Ang Div. (HD)	Ang Div. (HA)	Vtx Smear	250um pxl	500um px	l 1.3mm pxl	
$\Delta p_{t,total}$ [MeV/c] - 275 GeV	Ang Div. (HD) 40	Ang Div. (HA) 28	Vtx Smear 20	250um pxl 6	500um px 11	I 1.3mm pxl 26	
$\Delta p_{t,total}$ [MeV/c] - 275 GeV $\Delta p_{t,total}$ [MeV/c] - 100 GeV	Ang Div. (HD) 40 22	Ang Div. (HA) 28 11	Vtx Smear 20 9	250um pxl 6 9	500um px 11 11	I 1.3mm pxl 26 16	

Beam angular divergence

- Beam property, can't correct for it sets the lower bound of smearing.
- Subject to change (i.e. get better) beam parameters not yet set in stone
- Vertex smearing from crab rotation
 - Correctable with good timing (~35ps)
- Finite pixel size on sensor
 - 500um seems like the best compromise between potential cost and smearing

Particular process in BeAGLE: incoherent diffractive J/psi production off bounded nucleons.

Proton spectator case.

MC_Neutron_Theta

Polar angle, 0 [mrad]

8

=(n'-d)²-N

p_T Resolution		Proton			Neutron		
		MeV	MeV/c		MeV/c		
$p_T < 140 \text{ MeV}/c$		22		29	37		
$140 < p_T < 350 \text{ MeV}/c$		25		14	43		
$350 < p_T < 630 \text{ MeV}/c$		- 30		10	52		
$p_T > 630 \text{ MeV}/c$		26		9	70		
E. D. salation		Neut					
E Resolution		%	G	eV/	c		
50	50			5.5			
80	80			7			
$110 Ge$	110			8.5			
p > 130 GeV/c		6.2		11			

Assumptions:

1) ZDC

- energy resolution $\frac{\sigma_E}{E} = \frac{50\%}{\sqrt{E}} \oplus 5\%$
- Angular resolution $\frac{3 \text{ mrad}}{\sqrt{E}}$
- 2) Off-Momentum Detectors
 - 500 um x 500 um pixels
- 3) B0 Sensors
 - 50 um x 50 um pixels
- Using angular divergence numbers from pCDR 18x100 GeV e+p with strong cooling.

Methods	Momentum transfer $t \; (\text{GeV}^2)$							
	0 - 0.05	0.05 - 0.11	0.11 - 0.17	0.17 - 0.25	0.25 - 0.35	0.35 - 0.49	0.49 - 0.69	0.69 - 1.20
1. $\delta t/t$ (%) with $t = (p' - p)^2$	-	-	-	-	-	-	-	-
2. $\delta t/t$ (%) with $t = (e - e' - V)^2$	> 100	> 100	> 100	> 100	> 100	> 100	> 100	> 100
3. $\delta t/t$ (%) with $t\approx (p_{{}_{\rm T,V}}+p_{{}_{\rm T,e'}})^2$	20.3	7.8	5.8	4.8	3.9	3.4	3.0	2.5
4. $\delta t/t$ (%) with $t = (p' - (-n))^2$	49.6	41.6	36.2	31.6	28.2	24.4	17.9	16.0

Summary and takeaways

- The IR was designed with Roman Pots and a ZDC in mind.
 - The acceptances for DVCS are quite good across all energies, with low energy requiring some optimization.
- Measuring off-energy protons from nuclear breakup events is a challenge.
 - But this lattice allows for quite good acceptance, with most spectator protons being captured by the Offmomentum detectors.
- More processes using the far-forward region are under study (such as pions from lambda decay).
- Areas where the baseline IR leaves things to be desired drive the requirements for a second IR.

Discussion

11