
Summary of the Exclusive Reaction Working Group

Barbara Pasquini, Daria Sokhan, Raphael Dupre, Salvatore Fazio, Tuomas Lappi

Raphaël Dupré



Exclusive WG Session

We have regular weekly meeting

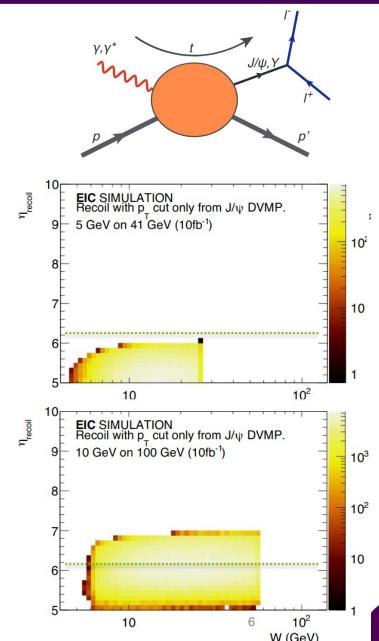
https://indico.bnl.gov/category/291

We had updates from some of the main topics we cover during our dedicated session:

And shared sessions with other working groups

VM Production: Electrons and Muons (S. Joosten, ANL)

Measurement appears very promising

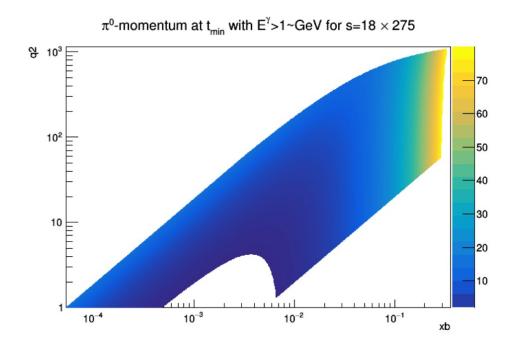

- Large coverage in Q^2 , x and t
- Capability to cover from valence to sea

Issues arise at lower energy settings

- Lower proton rapidity cut kills the lowenergy setting
- Makes difficult J/psi threshold physics

Muon decay channel

- Mostly work fine, with the same issue as pointed above
- Acceptance beyond η=3.5 for muons would help a lot



Kinematics studies for DVCS and deep exclusive π^0 (M. Defurne, CEA)

Channel complementary to DVCS

- For itself in term of meson production
- As the main contamination channel into DVCS

Looked at the detection limits in present settings

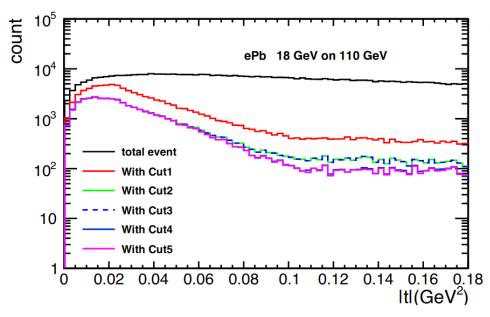
- Low energy photons at combinations of low Q² and large x
 - Mostly resolved in discussion linked to being too conservative on calorimetry
- Capability to separate the two photons of the π^0 decay
 - Issue arising at high x
- Coverage for proton measurement
 - Issue arising at high x for lower s configurations of the machine

CFF local fits at EIC (F.-X. Girod, JLab UConn)

Study to estimate the effect of each DVCS observables on CFF extraction at the EIC

- Based on local fits of the CFFs (Compton Form Factors)
- Includes many observables

	$\int \mathcal{L}$	Observables	$A_{e,p}$		
unpolarized	200 fb ⁻¹	σ	A _{LU}		
L polarized	$100 \; { m fb^{-1}}$	A _{UL}	A _{LL}		
T polarized	$100 \; { m fb^{-1}}$	A _{UTx}	A_{UTy}	A_{LTx}	A_{LTy}
e^+	$100 \; { m fb}^{-1}$	A ^C	A_LU^C		


Framework is in place

- Allow to test different energies, observable settings
 - Include exclude positron beam for instance
- Basis to update event generator studies

The EIC IR and diffractive eA physics (Wan Chang)

Study how to get rid of incoherent events

Using the Beagle generator

The impact of the different detectors is studied by adding one requirement / cut after the other.

Cut1:

no neutron in ZDC

Cut2:

Cut1 + no photon E>50MeV in ZDC

Cut3:

Cut2 + no proton in Roman Pots

Cut4:

Cut3 + no proton in off-energy detector

Cut5:

Cut4 + no proton in B0

Suppression of about two orders of magnitude at best

- Gamma resolution of ZDC below 50 MeV appears irrelevant
- This is not good enough for some of the studies
 - Question is raised about the physics in Beagle and if we can do better

Kinematics of exclusive measurements with EIC: How to assess and discuss it in the Yellow Reports? (C. Weiss, JLab)

Process	Objectives	Questions/comments
DVCS γ $x > 0.1$ few $10^{-3} < x < 10^{-1}$	valence GPDs spin/flavor nonsinglet/singlet/gluon GPDs spin/flavor	rates? overlap JLab12?
$x \ll 10^{-2}$	gluon/singlet GPDs	joint physics with $J/\psi,\phi$
$J/\psi, \phi$ x > 0.1 few $10^{-3} < x < 10^{-1}$	valence-like gluons gluons	rates? helicity-flip GPD E ?
$x \ll 10^{-2}$	gluons	joint physics with $\boldsymbol{\gamma}$
$\begin{array}{l} \rho^0 \\ x > 0.1 \\ \text{few } 10^{-3} < x < 10^{-1} \\ x \ll 10^{-2} \end{array}$	valence quark GPD flavor singlet/gluon GPD singlet/gluon GPD	rates? soft-hard transition? complements $\gamma, J/\psi, \phi$
ρ^+, K^* $x > 0.1$ few $10^{-3} < x < 10^{-1}$ $x \ll 10^{-2}$	valence quark GPD flavor sea GPD flavor —	rates? soft-hard transition? —
π^0 , η x > 0.1 few $10^{-3} < x < 10^{-1}$ $x \ll 10^{-2}$	valence quark transversity valence/sea transversity odderon?	rates? overlap JLab12? soft-hard transition? rates?
π^+, K^+ x > 0.1 few $10^{-3} < x < 10^{-1}$ $x \ll 10^{-2}$	valence quark transversity transversity, π/K form factor —	rates? overlap JLab12? soft-hard transition? —

Joint sessions between Diffraction & Tagging and Exclusive WGs + DWG

Morning session joint Exclusive/Diffraction & Tagging WGs:

Barak Schmookler: Elastic Hydrogen and Deuteron scattering

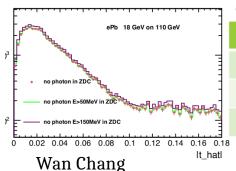
Charles Hyde: Initial state radiation as a probe of ep and eA scattering

Mark Strikman: Coherent gamma* ⁴He scattering emphasizing t-range for 4He detection

Sylvester Joosten: VM production: electrons vs muons Sam Heppelmann: Vector meson production simulations

Wan Chang: Suppression of incoherent background in VM production

Vadim Guzey: Diffractive dijet photoproduction at the EIC

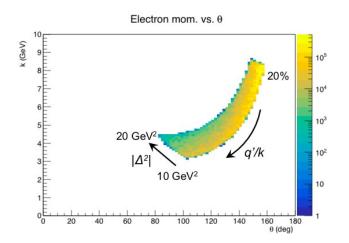

Farid Salazar: Diffractive dijets in DIS Wenliang Li: u-channel pi0 production

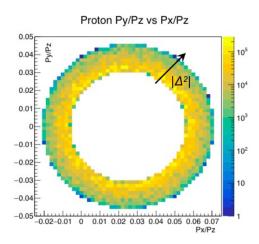
Afternoon session joint Diffraction & Tagging/Exclusive and DWG:

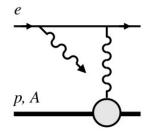
Alex Jentsch: DVCS and e+D spectator tagging in the FF region Douglas Higinbotham: Magic beam energies for polarized deuteron

Suppression of incoherent VM production

- Needed to isolate coherent contribution; diffractive minima
- We're at least a factor of 10 above where we need to be -> **problem**
- Acceptance for protons and neutrons
 - \bigcirc ZDC θ < 5mrad -> larger? -> implies wider bores in magnets etc.
- Decay photons low energy and ~ half of them invisible (Lorentz contraction)
 - O Lowest detectable energy?
 - O theoretical nuclear structure input needed?
- Explore different nuclei [excitation levels]?
- Photon detection in B0

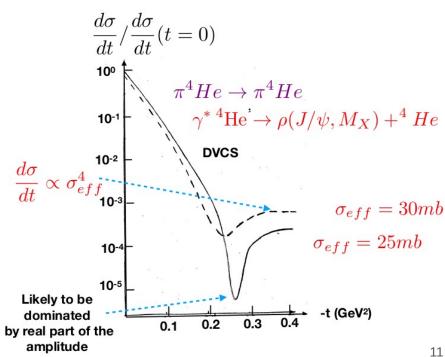



The survived events count after Cut2 with different energy cut on photon:


Survived event count				
E>150 MeV	71773			
E>50MeV	66101			
E>0 MeV	65278			

Initial state radiation for exclusive processes with varying \sqrt{s} [Hyde, Weiss]

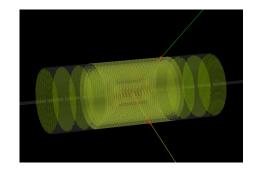
- Bethe-Heitler process
- Dynamic kinematic range without varying beam parameters $ep \rightarrow ep \gamma$ $10 \otimes 100 \text{ GeV}^2$ $10 \leq -\Delta^2 = -(P'-P)^2 \leq 20 \text{ GeV}^2$
 - Radiated photon: 20% < q'/k_e < 80%

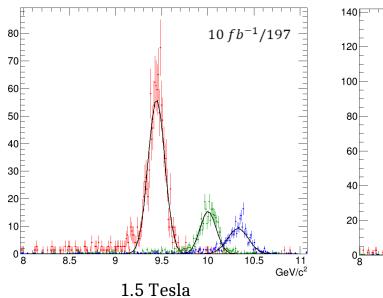


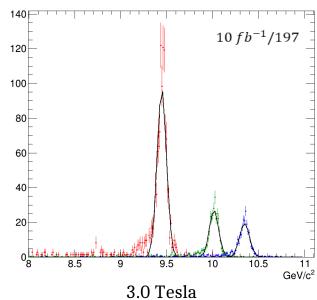
Coherent ⁴He scattering [Strikman]

- Coherent scattering on nuclei provides info on color fluctuations in probe (soft regime) and LT gluon shadowing (hard regime)
- Hard to measure at EIC for heavy nuclei.
 4He looks feasible
- VM production:
 t-range up to 0.5 GeV²
 good resolution for t ~ 0.01 GeV²
- Inelastic diffraction:
 resolution in M_x
 very good resolution in x_pomeron

3

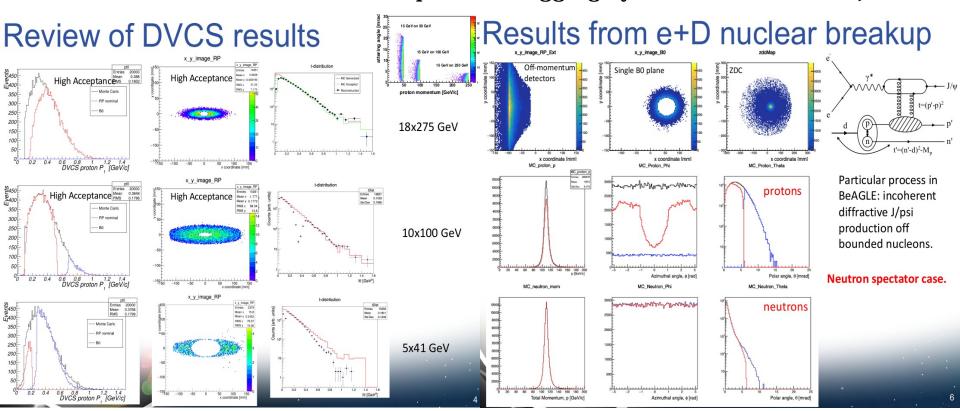

Upsilon Events in EICRoot All-Silicon Detector [S. Heppelmann]


Requires less than 1% momentum resolution


LBNL All-Silicon Detector

(Developed by LBNL's eRD16 generic EIC detector project)

- ·Silicon Tracker
- 6 layers
- •Silicon Endcap Disks
- 6 disks



Upsilon peaks are still distinguishable with a lower B-Field

Full simulations for DVCS and e+D spectator tagging by far forward WG [A. Jentsch]

The acceptances for DVCS are quite good across all energies, with low energy requiring some optimization.

Measuring off-energy protons from nuclear breakup events challenge Lattice allows for quite good acceptance, with most spectator protons being captured by the Off-momentum detectors.

Other discussed topics

- Quantify lower limit of acceptance of Roman pots [0° quoted]
 Understand nuclear fragment PID
- Deuteron polarization preserved at "magic" deuteron energies: 39.4; 118.1 GeV/A Feasibility of 39.4 GeV from accelerator POV?
- Intermediate \sqrt{s} values [between 100x10 and 275x18] for extraction of (diffractive) $F_{\rm L}$
- Implementation of far forward detectors in eic-smear? -> difficult so full simulations
- Collect commonly asked kinematics on Wiki: e.g. t-range in exclusive processes
- VM muon decay [S. Joosten]: muon detection in endcaps -> HCAL good muon detector already?