Jets for 3D imaging Miguel Arratia

Pavia EIC YR Meeting, May 21th 2020

EIC, a jet factory, will make the first jets in polarized DIS

- DIS jets: a new tool for 3D imaging.
- Potential for unique jet program, unlike any previous collider or fixed-target experiment

EIC detector in Delphes

https://cp3.irmp.ucl.ac.be/projects/delphes

- DELPHES card of EIC detector as in handbook is in: <u>https://github.com/miguelignacio/delphes_EIC/blob/maste-r/delphes_card_EIC.tcl</u>
- Using is fast and <u>painless</u>: ./DelphesPythia8 eicdetector.tcl out.out , then python analysis.py out.root.
- Particle-flow jet/MET, granularity, B-field, secondary vertices, charm-tagging, and much more.
- Automatic validation scripts (dozens like the one in right)
- ~10 years of testing and debugging by HEP, hundreds of active users, standard in "CERN Yellow reports"
- There is a growing EIC Delphes community, you can join us here https://join.slack.com/share/zt-ebq4da5z-UILcXLKKD3G8byJ~phqMow

Struck quark

Jet R=1.0

Jet energy budget

- For accurate jet and MET measurements, we need to be able to capture everything.
- Combined ECAL&HCAL resolution is key, tracking negligible.
- Tracking and calorimeter thresholds also important.

Jet-energy resolution

(particle-flow, R=1.0)

Goal is to measure accurately the

azimuthal angle between lepton and jet

Electron-jet Sivers asymmetry prediction (new!)

Similar formalism than, PRL 122 192003 (2019), and arXiv:1812.07549, different parametrizations

"Intrinsic width"

Detector resolution

Impact of smearing on asymmetries is under evaluation

Hadron-in-jet theory prediction (new!)

- By measuring both photon axis and jet axis we control separately TMD PDF (qT) and TMD FF (jT, z).
- Goal is multi-differential quark-transversity study.

$$\frac{\mathrm{d}\sigma}{\mathrm{d}y_e \,\mathrm{d}^2 \vec{p}_T^e \,\mathrm{d}^2 \vec{q}_T \,\mathrm{d}z_h \,\mathrm{d}^2 \vec{j}_T^h} =
\times \sigma_0 H_q(Q, \mu) \sum_q e_q^2 \mathcal{G}_q(z_h, \vec{j}_T, p_T^{\mathrm{jet}} R, \mu)
\times \int \frac{\mathrm{d}^2 \vec{b}_T}{(2\pi)^2} e^{i\vec{q}_T \cdot \vec{b}_T} f_q(x, \vec{b}_T, \mu) S_q(\vec{b}_T, y_{\mathrm{jet}}, R, \mu)$$

Collins Angle resolution

- Calculation on how this propagates to "asymmetry dilution" ongoing

Boosting to Breit-frame is not an option! The jet way bypasses the need of boost

Clean flavor selectivity

u-quarks for electron, d-quark for positron strange from charm-jets

Neutrino azimuthal angle

Resolution for Neutrino-jet opening angle

Feasibility studies still ongoing but looking promising! (comparable RMS to dijet at RHIC Phys. Rev. Lett. 99, 142003)

Requirements of "Jets for 3D imaging" program (under construction)

Table 1: Channels listed are increasingly demanding. For every row consider all requirements above as well. The (x, Q^2) dependence of the observables is omitted for brevity. Date: May 21, 2020, Miguel Arratia

Channel	Observable	Goal	Physics-driven requirement	Category	numbers
e-jet (NC)	$d\sigma, A_{UT}(\Delta\phi)$	k_T -dependence	$\Delta \phi$ res. << intrinsic width	Jet res.	ECAL&HCAL $dE/E < 60\%/\sqrt{E}$
		of quark Sivers	$\sigma(\Delta\phi) < 0.02 \text{ rad}$		
100 fb^{-1}			$R = 1.0 \rightarrow \text{had. corr. } O(1)\%$	Acceptance	2π , $-1.0 < \eta < 3.5$ HCAL and ECAL
			particle-flow reco	Granularity	endcap $\Delta \phi \times \Delta \eta \leq 0.025 \times 0.025$
h-in-jet (NC)	$d\sigma, A_{UT}(z_h, j_T)$	q-transversity	dp/p at high $z < jet dE/E$	Tracker	$dp/p < 3\%$ at 50 GeV, up to $\eta = 3.0$
100 fb^{-1}				PID	up to $-1.0 < \eta < 3.5$ and 50 GeV
ν-jet (CC)	$d\sigma, A_{UT}$	u Sivers	$\Delta \phi \ll 0.3 \text{ rad}$	E_T^{miss} res.	$dE_T^{miss}/E_T^{miss} < 15\%$
100 fb^{-1}			Bkg. rej. to phot and NC	Acceptance	2π , $ \eta < 3.5$ HCAL and ECAL
					E>100 MeV thres. ECAL
					E>400 MeV thres. HCAL
					$p_T > 100 \text{ MeV tracker}$
			>70% survival prob.	Jet/E_T^{miss} res.	dx/x < 20%,
			for 5 bins per-decade in x, Q^2		$dE_T^{miss}/E_T^{miss} < 15\%$
h-in-jet (CC)	$d\sigma, A_{UT}(z_h, j_T)$	u-transversity	_	_	_
100 fb^{-1}					
c-jet (CC)	$d\sigma, A_{LL}$	s PDF& helicity	charm-tagging	Tracker	c-jet tag at $> 10\%$ ($< 0.05\%$)
100 fb^{-1}					$\sigma(DCA) = 20 \ \mu\text{m}$, up to $ \eta = 3$
					$\approx 100\%$ eff.
				PID	TBD
h-in- c -jet (CC)	$d\sigma, A_{UT}(z_h, j_T)$	s-transversity	_	_	_
$100 \; {\rm fb^{-1}}$					
c -jet $(e^+ CC)$	$d\sigma, A_{LL}$	s/\bar{s} asymmetry	positrons		_
$100 \; {\rm fb}^{-1}$					

^{*}Not listed here: dijets for gluon Sivers, diffractive jets for Wigner, and others that will also be central for jets for 3D imaging

Summary

- Kinematic mappings and statistical projection done (since Temple)
- Fast simulations done for jet-based Sivers and Collins measurements in NC and CC DIS
- Key requirements identified.
- New theory predictions.

Fast simulation with Delphes3

DELPHES 3, A modular framework for fast simulation of a generic collider experiment

DELPHES 3 Collaboration (J. de Favereau et al.). Jul 24, 2013. 26 pp.

Published in JHEP 1402 (2014) 057

DOI: 10.1007/JHEP02(2014)057

e-Print: arXiv:1307.6346 [hep-ex] | PDF

References | BibTeX | LaTeX(US) | LaTeX(EU) | Harvmac | EndNote

ADS Abstract Service; Link to Article from SCOAP3

Detailed record - Cited by 1518 records 1000+

Citations include:

"Higgs Physics at the HL-LHC and HE-LHC" - Cepeda, M. et al. CERN Yellow Rep. Monogr. 7 (2019)
"Physics at a 100 TeV pp Collider: Standard Model Processes" - Mangano, M.L. et al. CERN Yellow Rep. (2017)

"FCC Physics Opportunities: Future Circular Collider Conceptual Design Report Volume 1" Eur. Phys. J. C79 (2019) no.6, 474 "The Compact Linear Collider (CLIC) - 2018 Summary Report" CERN Yellow Rep. Monogr. 1802 (2018) 1-98

Also several studies for ILC, CEPC...etc.

- It is based on parametrized tracking and calorimeter resolutions.
- Pythia8-Delphes3 can be run simultaneously. Accepts HEPMC and other formats as well
- It includes bending in magnetic field, granularity of calorimeters (not longitudinal segmentation though). PID efficiency/fake-rate, Jet reconstruction, particle flow, missing-energy, b-tagging, tau-tagging etc.

Jet/Met performance in Delphes vs CMS

This is **not** by construction, it emerges from tracking and calorimetry resolution and granularity, as well as implementation of "particle flow"

Quark Sivers effect with Jets

Liu, Ringer, Vogelsang, Yuan, PRL 122 192003 (2019)

$$\frac{d^5 \sigma(\ell p \to \ell' J)}{dy_\ell d^2 k_{\ell \perp} d^2 q_{\perp}} = \sigma_0 \int d^2 k_{\perp} d^2 \lambda_{\perp} x f_q(x, k_{\perp}, \zeta_c, \mu_F) \times H_{\text{TMD}}(Q, \mu_F) S_J(\lambda_{\perp}, \mu_F) \, \delta^{(2)}(q_{\perp} - k_{\perp} - \lambda_{\perp}) .$$

"The advantage of the lepton-jet correlation as compared to the standard SIDIS processes is that it does not involve TMD fragmentation functions."

Jet cross-section (anti-kT, R=1.0)

Neutral-current events

NC DIS, 10 + 275GeV, 0.1 < y < 0.85, $Q^2 > 25$ GeV² 1.0 10^{8} jet 0.8 [GeV 0.6 $d\sigma/dp_{\rm T} \times 100 fb_{\rm T}$ -0.2 10^{4} 0.0 10 20 30 40 Lab frame p_T (GeV)

Charged-current events

Contributions beyond LO are very small (<10%),
 so Pythia8 (LO) provides an excellent approximation for both NC and CC DIS

Collins angle resolution at STAR

J. Kevin Adkins, STAR Thesis 2019 https://arxiv.org/abs/1907.11233

Figure 6.12: ϕ_C Resolution Example Fit - A triple Gaussian fit to the spread in detector minus particle level ϕ_C values.

Yuxi Pan, STAR Thesis, 2015

Jet-energy dependence of Collins Angle resolution

- There is an interplay between energy resolution for jet (improves with energy) and momentum resolution for hadron (degrades)

Jets break convolution that creates correlations

$$\int d^2 \boldsymbol{k}_{\perp} d^2 \boldsymbol{P}_{\perp} f_1^a \left(x, \boldsymbol{k}_{\perp}^2; Q^2 \right) D_1^{a \to h} \left(z, \boldsymbol{P}_{\perp}^2; Q^2 \right) \delta^{(2)} \left(z \boldsymbol{k}_{\perp} - \boldsymbol{P}_{hT} + \boldsymbol{P}_{\perp} \right)$$

Jets would also help us avoid:

- Ad-hoc Gaussians
- x/z factorization,
- Flavour assumptions, etc.

TMD PDF

Electron-jet correlation

• Strong kinematic dependence on the width, but in general widths <0.1 rads.

Partonic channel, (NNLO calculation by F. Petriello)

PID requirements:

 Charged pions separation from Kaons and protons up to ~30 GeV