Kinematics studies for DVCS and deep exclusive π^0

M. Defurne

CEA Saclay - IRFU/DPhN

May 20th 2020

M. Defurne (CEA Saclay - IRFU/DPhN)

DVCS and $DV\pi^0P$

May 20th 2020 1 / 7

GPDs are extracting from deep exclusive processes such as DVCS (ep \rightarrow ep γ) or DVMP (ep \rightarrow ep $\pi, \phi, \eta \cdots$).

To put the most stringent constrains on a GPD, the dream would be to have:

- Many observables on many channels: cross sections, beam/target asymmetries,
- Differential in Q^2 , t, Φ_{LH} , x_B if allowed by statistics,
- with the fewest holes as possible in the acceptance => Focus of the beginning of this study.

These holes can be caused by:

- unsubtractable contamination,
- gaps between detectors.

Figure: $ep \rightarrow ep\pi^0$ (top) and $ep \rightarrow ep\gamma$ (bottom) cross sections $\neg q \rightarrow q$

$\pi^{\rm 0}$ contamination for DVCS

The main background for DVCS is the ep \rightarrow e'p' $\pi^0 \rightarrow$ e'p' $\gamma\gamma$.

The π^0 energy is shared between the two photons depending on the symetry of the decay and you may reconstruct a single photon.

In other words, it is a fraction of the decays which are responsible of the DVCS contamination. By Monte-Carlo simulation, you can estimate this fraction as long as you have a sample of properly identified π^0 s in data for normalization.

Limitations for π^0 detection

The two photons are too close to each other and we only reconstruct one.

- *Parameter :* Angular resolution of Hadron Endcap EM calorimeter.
- Expected to have a small cross sections for $Q^2 > 100$.
- The valence region no longer accessible for $s=18\times275~\text{GeV}^2$.

The two photons have an energy below some threshold:

- *Parameter :* Energy threshold in Barrel and Hadron Endcap EM.
- Definitely getting π^0 -events in these areas.
- But what kind of EM background?
- How much data at a given threshold?

Figure: π^0 Energy distribution for $t=t_{min}$ (Highest energy for a given Q^2/x_B).

Proton acceptance and Φ_{LH} coverage for s=18×275

Considering the following angular coverage for the proton:

- Roman pots from 0.001 to 0.005 rad.
- B0-tracker from 0.006 to 0.020 rad.
- Hadron endcap for angles greater than 0.035 rad.

We can evaluate the Φ_{LH} -coverage for harmonics studies.

No issue for proton detection at s=18×275 for t smaller than t_{min} -0.1. No acceptance for t_{min} -0.05.

Proton acceptance and Φ_{LH} coverage for low s

Low-t protons for $s=5\times41$ are sent in B0. The phase space where the acceptance is no longer 1 (blue) corresponds to gap between B0 and Hadron endcap.

Low-t protons for s=5×100 are sent in roman pots. The first blue line is the gap between Roman pots and B0, the second between B0 and Hadron endcap. $\equiv 10^{-10}$ $\equiv 10^{-10}$ May 20th 2020 6 / 7

- Identification of phase space areas sensitive to detector characteristics.
 → Low Q²/High-x_b with minimal energy deposit in EM.
 → Proton acceptance for high-xb for low-s configurations.
 Which s-configuration is the best?
- Need to study tracking resolution effect on exclusivity variables.
- Much complex: Is it worth pushing to change some limitations?
 → Depends on the expected statistics.
 - \rightarrow Relevance of the phase space in the GPD extraction.
- Work in collaboration with PARTONS and Kresimir Kumericki for GPD phenomenology studies.