Inclusive diffraction in *e*-*p* **DIS**

Looking into regions beyond HERA

Wojtek Słomiński Nestor Armesto, Paul Newman, Anna Staśto

Continuation of studies in PRD100 (2019) no.7, 074022, arXiv:1901.09076

- Diffractive DIS model, data simulation and fits
- x_L and t range
- Subleading component study
- F_L study

Diffraction and Tagging WG • 2nd EIC Yellow Report Workshop

Inclusive diffractive DIS

$$\xi \equiv x_{IP} = \frac{(P - P') \cdot q}{P \cdot q} = \frac{Q^2 + M_X^2 - t}{Q^2 + W^2 - m_p^2}$$
$$\beta = \frac{Q^2}{2(P - P') \cdot q} = \frac{Q^2}{Q^2 + M_X^2 - t}$$
$$x = \xi\beta$$

Incoming proton runs along z axis.

Outgoing proton momentum is given in terms of (x_L, p_\perp) with $P'_+ = x_L P_+$.

Cross section, reduced cross section, diffractive structure functions $\frac{d\sigma}{d\beta dQ^2 d\xi dt} = \frac{2\pi\alpha^2}{\beta Q^4} \left[1 + (1 - y)^2\right] \sigma_{\text{red}}^{D(4)}(\beta, Q^2, \xi, t)$ $\sigma_{\text{red}}^D = F_2^D - \frac{y^2}{1 + (1 - y)^2} F_L^D$ $\dim = \text{GeV}^{-2}$

Upon integration over t $\sigma_{red}^{D(3)}$, $F_{2,L}^{D(3)}$ become dimensionless

$x_{\rm L}$, *t* plane — final proton tagging

- EIC can tackle large $\xi \cong 1 x_L$ regions beyond HERA
- The coverage depends on the angular acceptance

|*t*| measured up to ~ 2 GeV², is very interesting, e.g. for determination of the *t*-dependence of the secondary exchange.

Two component model for diffractive SFs (as used in the HERA fits)

Regge factorization works at low ξ (< 0.01). At higher ξ , subleading exchanges (reggeons/mesons) enter the game – they are all parametrized by a single additional "Reggeon" term

$$F^{D(4)}(z, Q^{2}, \xi, t) = \varphi_{\mathbf{P}}(\xi, t) F^{\mathbf{P}}(z, Q^{2}) + \varphi_{\mathbf{R}}(\xi, t) F^{\mathbf{R}}(z, Q^{2})$$
free parameter
$$\varphi_{\mathbf{P},\mathbf{R}} = \text{Regge-type flux:}$$

$$\varphi(\xi, t) \sim \frac{e^{Bt}}{\xi^{2\alpha(t)-1}} \quad \text{with } \alpha(t) = \alpha_{0} + \alpha't \qquad 3 \text{ parameters per flux}$$
From HERA fits (ZEUS-SJ),
$$\mathbf{P} \text{ and } \mathbf{R} \text{ have very different shapes in } (\xi, t): \qquad \frac{\xi \phi_{P}(\xi, t) \propto \xi^{-0.22} e^{-7|t|}}{\xi \phi_{R}(\xi, t) \propto \xi^{0.6+1.8|t|} e^{-2|t|}}$$

$$F^{\mathbf{P}}$$
 from Pomeron PDFs via NLO DGLAP evolution starting at $\mu_0^2 = 1.8 \text{ GeV}^2$
 $f_k^{\mathbf{P}}(z) = A_k z^{B_k} (1-z)^{C_k}, \quad k = g, q$
 $q = d = u = s$
 $3 \text{ parameters per PDF}$

Simulations and fits

- Pseudo-data generation
 - Binning:
 - 4 bins per order of magnitude in each β , Q^2 , ξ ;
 - two extra bins for $\beta > 0.3$
 - Model:
 - extrapolation from ZEUS-SJ DPDFs
 - random smearing: Gaussian from 5% sys. + Poissonian from lumi; nb. statistical errors are basically negligible for $\delta_{sys} = 5\%$
 - several random samples generated
- DPDFs fits to $\sigma_{\rm red}^{D(3)}$
 - Out of all 13 parameters only up to 9 are used in the fits
 - $B_{P/R}$, $\alpha'_{P/R}$ are fixed from other measurements, e.g. $\sigma_{\rm red}^{D(4)}$
 - Good quark PDFs determination
 - Moderate gluon determination additional data (as dijets) would help

Pomeron, Reggeon, F_2 , F_L components of σ_{red}

$$\xi \sigma_{\rm red}^{D(3)} \sim \xi^{-0.2} \sigma_P + \xi^{0.6} \sigma_R$$

- - very interesting region for the Pomeron measurement
- \square *R* contribution grows with ξ
 - High ξ required for the determination of subleading "Reggeon" term

$$\sigma_{\rm red} = F_2 - \frac{y^2}{1 + (1 - y)^2} F_{\rm L}$$

- □ Significant $F_{\rm L}$ component, ~30 times higher than at HERA
 - However, some intermediate
 beam energy settings needed for
 *F*_L measurements

Sensitivity to the Reggeon contribution to σ_{red}

Data at $\xi > 0.3$ desired for the subleading exchange study.

$F_{\rm L}$ investigation

- □ Four beam setups used for the simulations: 100×10, 120×10, 165×10, 275×18 GeV
- □ 83 bins in (ξ, β, Q^2) selected such that
 - □ they are common to all four beam setups
 - $\Box \ y > 0.5 \text{ for } 100 \times 10 \text{ GeV}$
 - $\square M_X > 2 \text{ GeV}$
- □ F_2 , F_L obtained from fits to $\sigma_{red} = F_2 Y_L(y) F_L$ in each (ξ, β, Q^2) bin
- $\Box \xi F_{\rm L}(\xi,\beta,Q^2)$ plotted vs. β

Two intermediate energies added

$$Y_{\rm L}(y) = \frac{y^2}{1 + (1 - y)^2}$$

F_L investigation – fits to $\sigma_{red}^{D(3)}$

Example results of fits to $\sigma_{red} = F_2 - Y_L(y) F_L$ (5 of total 83 bins shown)

F_L investigation — fit results

Desired detector and machine features:

D Proton tagging angle, θ , between 0.5 and 10 mrad

– for $\sigma_{\rm red}^{D(4)}$ measurement

□ at 275 × 18 GeV, $\theta \leq$ 7 mrad may be enough

 \Box *x*^{*L*} down to 0.6

– for the determination of subleading "Reggeon" contribution

- □ Additional intermediate energies
 - for the diffractive F_L measurement

EXTRAS

 x, Q^2 range – EIC and HERA

New, high *x* region to explore

Detailed binning 100x10 275x18

Detailed binning 100×10 GeV

Wojtek Slominski - Diffraction and Tagging WG • 2nd EIC Yellow Report Workshop

Detailed binning $275 \times 18 \text{ GeV}$

Wojtek Slominski - Diffraction and Tagging WG • 2nd EIC Yellow Report Workshop

D(3)pseudo-data examples $\sigma_{
m red}$

Quark and gluon DPDFs form C and S fits

Data selection $Q^2 > 5 \ {
m GeV}^2$, $\xi < 0.1$ 375 data points

- As compared to HERA
 - Higher accuracy
 - More data points
- Both C and S fits give $\chi^2 \approx 1$
- Another, gluon-sensitive process needed
 - e.g. dijet production, dominated by BGF

Gluon DPDFs form C and S fits

Quark DPDFs form C and S fits

Rapidity gap

Rapidity range for $y_e = 0.005 \div 0.96$, $p_T = 0 \div 4 \text{ GeV}$