TMD grids and tools for predictions

Chiara Bissolotti University of Pavia and INFN

Alessandro Bacchetta, Valerio Bertone, Giuseppe Bozzi, Filippo Delcarro, Fulvio Piacenza, Marco Radici, Andrea Signori

European Research Council

EIC Yellow Report Workshop, Pavia 21 May 2020

and

for $qT \ll Q$, cross section and structure functions are convolutions of TMDs

we created

NangaParbat

how to make theoretical predictions available?

 $F_{XY} \propto f_X \otimes d_Y$

tools also present in

TMD fitting framework

arTeMiDe

- grid production
 - interpolation
 - convolution

Grids for cross section and structure function

grids with infinitesimal steps

two options

sparse grids + interpolation

PRO

simplest solution (temporary)

only selected kinematic only selected process

how to include theory errors?

CON

Grids for TMDs and convolution tool

wide application range no restrictions on kinematics

PRO simple to include theory errors

need some standardized code

small size of grids (10-20 MB)

more freedom

 $F_{XY} \propto f_X(x, \mathbf{k}_1^2, Q) \otimes d_Y(z, \mathbf{k}_2^2, Q)$

computation slightly longer (still very fast)

CON

from Alexey Vladimirov's talk

TMD grids with NangaParbat

- format in file.yaml
- LHAPDF style: info file and replicas

key: value

oduced with Nang	aParbat + APFEL++	
chetta, F. Delca	rro, C. Pisano, M. Radici, A. S	Sigr
v:1703.10157 0	Bacchetta <i>et al.,</i> JHEP 06 (17) 081 arXiv:1703.10157	
014lo68cl		
0		
	standard	
bstarmin	and	
e Carlo	flexible form	at

NangaParbat grids and interpolator

we can provide **TMD PDF and TMD FF grids**

package to release on **TMDlib**

PRO small size of grids

AND polynomial interpolator APFEL@++ based

TMD grids

we tested the interpolator in many kinematical regions

Convolution

SIDIS observable

unpolarized fully differential cross section

- NangaParbat framework: Bacchetta *et al.*, arXiv:1912.07550
 - no Y term

resummation at N3LL

hard cross section and Wilson coeffs. at NNLO

Input TMD PDF and TMD FF from PV17 fit

(replica 105) Bacchetta *et al.*, JHEP **06** (17) 081 arXiv:1703.10157

NangaParbat

standard grids for TMDs

structure functions cross sections

predictions for **EIC**

binning in (x, Q²)

Bins have same size to allow recursive integration. It can be changed on demand..

Arbitrary cuts:

- $X \le 0.7$
- $Q^2 \leq 500 \text{ GeV}^2$

