Dihadrons at the EIC

Christopher Dilks Yellow Report Workshop Pavia May 2020

Outline

- Introduction
- Event Selection and Monte Carlo Details
- x,Q² planes and binning
- Effects of y cuts
- Polar plots
- Effects of acceptance limits
- Dihadron kinematics
- PID performance

Dihadrons: Probing Spin-Orbit Correlations in Hadronization

Unpolarized SIDIS:

- Cahn Effect: quark transverse momentum leads to azimuthal modulations of SIDIS cross section
- Boer-Mulders Effect: Non-collinear quarks in an unpolarized proton can have transverse polarization, also contributing azimuthal modulations

Boer-Mulders and Cahn effects are comparable in single hadron production

- HERMES and COMPASS data, e.g. Phys.Rev.D 81 (2010) 114026
- Dihadrons can help decouple BM from Cahn
- Extra degree of freedom in dihadrons
 - Cahn effect impacts dihadron total momentum direction P_h
 - Utilize azimuthal angle about P_{h} , in addition to the azimuth about the virtual photon
- Advantages from a broader and higher Q² range at an EIC
 - Broader Q² range probes evolution effects
 - Higher Q² suppresses Cahn effect in single-hadron asymmetries (Cahn is twist-4)
 - Lower Q² for overlap with other SIDIS experiments

Dihadrons: Probing Spin-Orbit Correlations in Hadronization

Longitudinally polarized SIDIS: Helicity DiFF G¹:

- Not yet constrained by data!
- Spin-orbit correlations in hadronization

- Fragmenting quark acquires transverse polarization via 'wormgear' splitting in the quark-jet hadronization model
- Preliminary CLAS12 data indicate significant effect, dependent on invariant mass

Collinear Twist-3 PDFs e(x) and h_{L}(x):

- CLAS6 data provided the first e(x) extraction, consistent with models; CLAS12 data are in agreement
- Physical Interpretation via moments of e(x):
 - Transverse color-force on a transversely polarized struck-quark, in an unpolarized proton
 - πN sigma terms:
 - Quark mass contribution to proton mass
 - Quark chromomagnetic dipole moment \rightarrow CP-odd $\pi\text{-N}$ coupling
- No experimental constraints yet for $h_{L}(x)$

Dihadrons: Probing Spin-Orbit Correlations in Hadronization

Transversely polarized SIDIS:

- Access to several additional TMDs:
 - **Transversity** \rightarrow Tensor Charge

$$\delta q = \int_{-1}^{1} dx h(x) = \int_{0}^{1} dx \left[h(x) - \bar{h}(x) \right]$$

- Quark EDM contribution to nucleon EDM
 - \rightarrow CP violation
- Comparisons with lattice QCD calculation
- Sivers Function
- Kotzinian-Mulders (wormgear) Function
- Pretzelocity
- Twist-3 TMDs

FUT	$f_{1T}^{\perp} \otimes D_1 + g_{1T} \otimes G_1$ $h_1 \otimes H_1$	$f_T \otimes D_1 \\ f_T^\perp \otimes D_1$	$h_T \otimes H_1$ $h_T^\perp \otimes H_1$
	$h_{1T}^{\perp} \otimes H_1$		
F _{LT}	$g_{1T} \otimes D_1 + f_{1T}^{\perp} \otimes G_1$	$g_T \otimes D_1$ $g_T^{\perp} \otimes D_1$	$e_T \otimes H_1$ $e_T^\perp \otimes H_1$

Twist-2 TMDs

Twist-3 TMDs N/qT U L U $f \perp$ h, e q^{\perp} \mathbf{L} f_L^{\perp} h_L, e_L g_L^{\perp} \mathbf{T} f_T , $h_T, e_T, h_T^{\perp},$ f_T^{\perp} g_T, g_T^{\perp} e_T^{\perp}

Dihadron Fragmentation and Partial Waves

$$H_1^{\perp} = \sum_{\ell=0}^{\ell_{\max}} \sum_{m=-\ell}^{\ell} \underline{P_{\ell,m}(\cos\vartheta)} e^{im\left(\phi_{R_{\perp}} - \phi_p\right)} H_1^{\perp|\ell,m\rangle}(z, M_h, |\boldsymbol{p}_T|)$$

Dihadron Fragmentation Functions (DiFFs)

h_1h_2/q	U	L	Т	
UU	D _{1,00}		$H_{1,OO}^{\perp}$	
LU	$D_{1,OL}$		$H_{1,OL}^{\perp}$	
$\mathbf{L}\mathbf{L}$	$D_{1,LL}$		$H_{1,LL}^{\perp}$	
\mathbf{TU}	$D_{1,OT}$	$G_{1,OT}^{\perp}$	$\begin{cases} H_{1,OT}^{\perp} & \text{if } m < 0 \\ H_{1,OT}^{\triangleleft} & \text{if } m > 0 \end{cases}$	
\mathbf{TL}	$D_{1,LT}$	$G_{1,LT}^{\perp}$	$\begin{cases} H_{1,LT}^{\perp} & \text{if } m < 0 \\ H_{1,LT}^{\triangleleft} & \text{if } m > 0 \end{cases}$	
\mathbf{TT}	$D_{1,TT}$	$G_{1,TT}^{\perp}$	$\begin{cases} H_{1,TT}^{\perp} & \text{if } m < 0 \\ H_{1,TT}^{\triangleleft} & \text{if } m > 0 \end{cases}$	

- DiFFs expand in partial waves
- Access to interference between dihadrons with relative angular momenta
 - ss, sp, pp interference

Dihadron Kinematics

Monte Carlo

Event Generation

- Pythia6 (via pythiaeRHIC)
 - 1M events
 - Radiative corrections using RADGEN attempted, but was unsuccessful
 - Using steer file obtained from Elke
- Kinematic maps below focus on low and high CoM energy: 5x41 and 18x275

Fast Simulation

- `eic_smear` with the `handbook` detector setting (via eJANA)
- Require the electron and hadron E and P to be smeared (in tracker+calorimeter)

Analysis

- DIS kinematics reconstructed using highest-energy scattered electron
- Pions and Kaons are paired inclusively
- PID studies
- Architecture for asymmetry fits / projections is ready
 - Uses same code for a parallel analysis at CLAS
 - Projections for partial wave amplitudes is also possible

- Energies:
- 5x41 $\sqrt{s} = 28.7 \text{ GeV}$
- 5x100 √s = 44.7 GeV
- 10x100 √s = 63.3 GeV
- $18x275 \quad \sqrt{s} = 140.7 \text{ GeV}$

Event Selection

cut for event generator

 $Q^2 > 1 \text{ GeV}^2$ cu W > 3 GeV ev 0.01 < y < 0.95 m

exclude elastic / resonance region

lower bound is to avoid region in which calculating x, Q2, etc. via the e' momentum may be insufficient

 $x_{F_h} > 0$ h $z_h > 0.01$ c $z_{h_1h_2} < 0.95$ f

help ensure hadrons are produced in the current fragmentation region

cuts out long M_h tail at z~0 peak (need to think about...)

helps avoid exclusive region

Focusing on $\pi^+\pi^-$ channel

(x,Q²) Planes, with Binning

Diagonal lines show y contour at the cut of 0.01, along with the CLAS12 upper limit (y=1)

- 18x275 plot includes data with y<0.01
- Kinematic reach of 5x41 with Q2>1 does not extend to y<0.01, but overlaps with CLAS12
- Vertical / horizontal lines demarcate (x,Q^2) bin boundaries, used in the following slides
- Next slides show matrices of plots corresponding to these bins

Low-y Studies: effects of y cuts

Smearing Disabled

Effects of y cut on p_{τ}

Smearing Disabled

- This shows π + p_T versus y; black line indicates y=0.01
- 4 plot matrix corresponds to binning shown on (x,Q²) planes above
- The impact of y>0.01 cut is negligible
- \blacksquare Higher y cuts may start to shave away low $p_{_{\rm T}}$ at high-x and low Q^2

Effects of y cut on $q_T (= P_h^{\perp} / Z_{pair})$

Smearing Disabled

Compare to q_τ versus y; black line indicates y=0.01
Mean q_τ will decrease a bit as y cut is increased

Aside: Alternative methods for calculating (x,Q²)

Study from Anselm

Fraction of events staying in bin (10x100)

х

Aside: Alternative methods for calculating (x,Q²)

Study from Anselm

15

Aside: Alternative methods for calculating (x,Q²)

Study from Anselm

Fraction of missing energy, from acceptance limits Larger fraction at low-y \rightarrow correlates to inaccuracy of (x,Q²)

Pion Momentum

Radius set at 30 GeV; compare to next slide's zoomed plot Smearing with eic-smear enabled \rightarrow acceptance cuts at $|\eta|=3.5$ This is for π + of π + π - dihadrons, but the π - looks the same

Pion Momentum

- Radius set at 10 GeV
- Smearing with eic-smear enabled \rightarrow acceptance cuts at $|\eta|$ =3.5
- **This is for** π + of π + π dihadrons, but the π looks the same
- Some backward production at low x

Pion Momentum vs. Pseudorapidity

Smearing Disabled

- Smearing disabled, to show activity beyond acceptance cuts
 - Enabling smearing does not alter the shape of the distributions much
- Lines for |η|=3.5 are shown
- Acceptance cuts only effect p < ~4 GeV</p>
- = $\pi/K/p$ separation up to p~8 GeV is sufficient

Pion Transverse Momentum vs. Pseudorapidity

Smearing Disabled

- Smearing disabled, to show activity beyond acceptance cuts
 - Enabling smearing does not alter the shape of the distributions much
- 📕 Horizontal lines for |η|=3.5
- Impact of acceptance cuts is primarily on low p_{τ} , well below the 500 MeV threshold (vertical lines)

Effects of η cuts on q_{τ}

Smearing Disabled

Plots show q_{τ} =P_h[⊥]/z_{pair} vs. η of π+

- Smearing disabled, to show activity beyond acceptance cuts
- Vertical lines for |η|=3.5
- E Little impact of acceptance cuts on q_{τ}

Effects of p_{τ} cuts on q_{τ}

Smearing Disabled

- **Plots show q_T vs. p_T of \pi+**
- Smearing disabled, to show activity beyond acceptance cuts
- Vertical lines $p_T = 500 \text{ MeV}$
- \blacksquare Higher p_{τ} cuts may have mild impact at low q_{τ}

Dihadron Kinematics: Invariant Mass

0

0.5

1

1.5

2

2.5

M, [GeV]

1.5 2.5 2 $\pi^+\pi^-$ M_b distribution, for 1<Q ²<10 and 0.005<x<1

- Strong K_s peak seen, not smeared very much
- ρ peak also visible
- Not much dependence on x, Q^2 , or \sqrt{s}

Dihadron Kinematics: Azimuthal correlations ϕ_h vs. ϕ_R

- ϕ_h peaks at ±π indicate a strong tendency of dihadron momentum sum P_h to be in lepton scattering plane, with P_h[⊥] opposite of p_e[⊥], where "[⊥]" denotes the plane transverse to q
 - Similar shape seen in $\varphi_{_h}$ of single hadrons
- \mathbf{P}_{R} peaks at $\pm \pi$ and 0 indicate the hadrons also tend to be within the lepton scattering plane
- These shapes are also present in the generated (not smeared) sample

Dihadron Kinematics: CoM Frame Production Angle

 \mathbf{I} $\mathbf{\Theta}$ represents the "decay" angle of the hadron pair, in the rest frame of the dihadron

Ξ Dihadron Fragmentation Functions are expanded in partial waves, parameterized by θ

- Sensitivity to ss, sp, pp interference of dihadroproduction
- **I** ldeal distribution follows a sin θ shape
- Double peaking visible at low-x and high Q²

Dihadron Kinematics: θ vs. P_h

- Plots show correlation between θ and the hadron momentum sum P_h
- \blacksquare Double peak separation correlates with P_h

PID Performance

Using 2σ separation:

- Fraction of reconstructed $\pi\pi$ pairs
- Fraction of reconstructed πK pairs
- Fraction of reconstructed KK pairs

Study from Anselm

PID Performance

π^{0} Reconstruction with E_v>200 MeV

 η Reconstruction with E_v>200 MeV

Summary and Outlook

- Dihadrons access several aspects of the nucleon:
 - Spin-momentum correlations in hadronsization
 - Transverse-momentum dependent PDFs
 - Twist-3 TMD PDFs
- EIC simulation studies are well underway
- Next Steps:
 - Asymmetry projections, including partial wave sensitivity
 - Study other dihadron channels, including kaons