Dihadrons at the EIC

Christopher Dilks
Yellow Report Workshop Pavia
May 2020

Outline

- Introduction
- Event Selection and Monte Carlo Details
- $\mathrm{x}, \mathrm{Q}^{2}$ planes and binning
- Effects of y cuts
- Polar plots
- Effects of acceptance limits
- Dihadron kinematics
- PID performance

Dihadrons: Probing Spin-Orbit Correlations in Hadronization

Unpolarized SIDIS:

\checkmark Cahn Effect: quark transverse momentum leads to azimuthal modulations of SIDIS cross section
Boer-Mulders Effect: Non-collinear quarks in an unpolarized proton can have transverse polarization, also contributing azimuthal modulations

Boer-Mulders and Cahn effects are comparable in single hadron production

- HERMES and COMPASS data, e.g. Phys.Rev.D 81 (2010) 114026
- Dihadrons can help decouple BM from Cahn
- Extra degree of freedom in dihadrons
- Cahn effect impacts dihadron total momentum direction P_{h}
- Utilize azimuthal angle about P_{h}, in addition to the azimuth about the virtual photon

Advantages from a broader and higher \mathbf{Q}^{2} range at an EIC

- Broader Q^{2} range probes evolution effects
- Higher Q^{2} suppresses Cahn effect in single-hadron asymmetries (Cahn is twist-4)
- Lower Q^{2} for overlap with other SIDIS experiments

Dihadrons: Probing Spin-Orbit Correlations in Hadronization

Longitudinally polarized SIDIS:

- Helicity DiFF $G_{1}{ }^{\perp}$:
- Not yet constrained by data!
- Spin-orbit correlations in hadronization

- Fragmenting quark acquires transverse polarization via 'wormgear' splitting in the quark-jet hadronization model
- Preliminary CLAS12 data indicate significant effect, dependent on invariant mass

Collinear Twist-3 PDFs e(x) and $h_{\llcorner }(x)$:

- CLAS6 data provided the first $\mathrm{e}(\mathrm{x})$ extraction, consistent with models; CLAS12 data are in agreement
- Physical Interpretation via moments of $\mathrm{e}(\mathrm{x})$:
- Transverse color-force on a transversely polarized struck-quark, in an unpolarized proton
- πN sigma terms:
- Quark mass contribution to proton mass
- Quark chromomagnetic dipole moment $\rightarrow \mathrm{CP}$-odd $\pi-\mathrm{N}$ coupling
- No experimental constraints yet for $h_{L}(x)$

Dihadrons: Probing Spin-Orbit Correlations in Hadronization

Transversely polarized SIDIS:

Access to several additional TMDs:

- Transversity \rightarrow Tensor Charge

$$
\delta q=\int_{-1}^{1} d x h(x)=\int_{0}^{1} d x[h(x)-\bar{h}(x)]
$$

- Quark EDM contribution to nucleon EDM
\rightarrow CP violation
- Comparisons with lattice QCD calculation
- Sivers Function
- Kotzinian-Mulders (wormgear) Function
- Pretzelocity
- Twist-3 TMDs

$$
\begin{array}{|llll|}
\hline F_{U T} & f_{1 T}^{\perp} \otimes D_{1}+g_{1 T} \otimes G_{1} & f_{T} \otimes D_{1} & h_{T} \otimes H_{1} \\
& h_{1} \otimes H_{1} & f_{T}^{\perp} \otimes D_{1} & h_{T}^{\perp} \otimes H_{1} \\
& h_{1 T}^{\perp} \otimes H_{1} & & \\
\hline F_{L T} & g_{1 T} \otimes D_{1}+f_{1 T}^{\perp} \otimes G_{1} & g_{T} \otimes D_{1} & e_{T} \otimes H_{1} \\
& & g_{T}^{\perp} \otimes D_{1} & e_{T}^{\perp} \otimes H_{1} \\
\hline
\end{array}
$$

Twist-2 TMDs

\mathbf{N} / \mathbf{q}	\mathbf{U}	\mathbf{L}	\mathbf{T}
\mathbf{U}	f_{1}		h_{1}^{\perp}
\mathbf{L}		g_{1}	$h_{1 L}^{\perp}$
\mathbf{T}	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1 T}, h_{1 T}^{\perp}$

Twist-3 TMDs

\mathbf{N} / \mathbf{q}	\mathbf{U}	\mathbf{L}	\mathbf{T}
\mathbf{U}	f^{\perp}	g^{\perp}	h, e
\mathbf{L}	f_{L}^{\perp}	g_{L}^{\perp}	h_{L}, e_{L}
\mathbf{T}	f_{T}, f_{T}^{\perp}	g_{T}, g_{T}^{\perp}	$h_{T}, e_{T}, h_{T}^{\perp}, e_{T}^{\perp}$

quark tensor vertex / Fadeev eq.
lattice QCD
global analyses from data

Dihadron Fragmentation and Partial Waves

$$
H_{1}^{\perp}=\sum_{\ell=0}^{\ell_{\max }} \sum_{m=-\ell}^{\ell} \underline{P_{\ell, m}(\cos \vartheta)} e^{i m\left(\phi_{R_{\perp}}-\phi_{p}\right)} H_{1}^{\perp|\ell, m\rangle}\left(z, M_{h},\left|\boldsymbol{p}_{T}\right|\right)
$$

Dihadron Fragmentation Functions (DiFFs)

$h_{1} h_{2} / q$	\mathbf{U}	\mathbf{L}	\mathbf{T}
$\mathbf{U U}$	$D_{1, O O}$		$H_{1, O O}^{\perp}$
$\mathbf{L U}$	$D_{1, O L}$		$H_{1, O L}^{\perp}$
$\mathbf{L L}$	$D_{1, L L}$	$H_{1, L L}^{\perp}$	
$\mathbf{T U}$	$D_{1, O T}$	$G_{1, O T}^{\perp}$	$\begin{cases}H_{1, O T}^{\perp} & \text { if } m<0 \\ H_{1, O T}^{\triangleleft} & \text { if } m>0\end{cases}$
$\mathbf{T L}$	$D_{1, L T}$	$G_{1, L T}^{\perp}$	$\begin{cases}H_{1, L T}^{\perp} & \text { if } m<0 \\ H_{1, L T}^{\triangleleft} & \text { if } m>0\end{cases}$
$\mathbf{T T}$	$D_{1, T T}$	$G_{1, T T}^{\perp}$	$\begin{cases}H_{1, T T}^{\perp} & \text { if } m<0 \\ H_{1, T T}^{\triangleleft} & \text { if } m>0\end{cases}$

- DiFFs expand in partial waves
- Access to interference between dihadrons with relative angular momenta
- ss, sp, pp interference

Dihadron Kinematics

Dihadron CoM production angle:

Monte Carlo

- Event Generation
- Pythia6 (via pythiaeRHIC)
- 1M events

Energies:

- $5 \times 41 \quad \sqrt{ }=28.7 \mathrm{GeV}$
- 5×100 Vs $=44.7 \mathrm{GeV}$
- $10 \times 100 \mathrm{Vs}=63.3 \mathrm{GeV}$
- 18×275 Vs $=140.7 \mathrm{GeV}$
- Radiative corrections using RADGEN attempted, but was unsuccessful
- Using steer file obtained from Elke
- Kinematic maps below focus on low and high CoM energy: 5×41 and 18×275
- Fast Simulation
- `eic_smear` with the `handbook` detector setting (via eJANA)
- Require the electron and hadron E and P to be smeared (in tracker+calorimeter)
\square Analysis
- DIS kinematics reconstructed using highest-energy scattered electron
- Pions and Kaons are paired inclusively
- PID studies
- Architecture for asymmetry fits / projections is ready
- Uses same code for a parallel analysis at CLAS
- Projections for partial wave amplitudes is also possible

Event Selection

$Q^{2}>1 \mathrm{GeV}^{2}$ athosemensemem
$W>3 \mathrm{GeV}$ exclude elastic / resonance region
$0.01<y<0.95 \begin{aligned} & \text { lower bound is to avoid region in which calculating } \mathrm{x} \text {, } \mathrm{Q} 2 \text {, etc. via the e' } \\ & \text { momentum may be insufficient }\end{aligned}$
$X_{F_{h}}>0$ help ensure hadrons are produced in the current fragmentation region
$Z_{h}>0.01$ cuts out long M_{h} tail at $z \sim 0$ peak (need to think about...)
$z h_{1} h_{2}<0.95$ helps avoid exclusive region

Focusing on $\pi^{+} \pi^{-}$channel

($\mathrm{x}, \mathrm{Q}^{2}$) Planes, with Binning

Diagonal lines show y contour at the cut of 0.01 , along with the CLAS12 upper limit ($y=1$)

- 18×275 plot includes data with $\mathrm{y}<0.01$
- Kinematic reach of 5×41 with Q2>1 does not extend to $y<0.01$, but overlaps with CLAS12Vertical / horizontal lines demarcate ($\mathrm{x}, \mathrm{Q}^{2}$) bin boundaries, used in the following slidesNext slides show matrices of plots corresponding to these bins

Low-y Studies: effects of y cuts

Smearing Disabled

DIS kinematics calculated using scattered electron are not reliable for $y<0.01$By $y=0.1$, there are already differences up to 15%
(small fraction of high-y discrepancies not studied)

Effects of y cut on p_{T}

Smearing Disabled
$5 \times 41 \mathrm{GeV}$

This shows $\pi+p_{T}$ versus y; black line indicates $y=0.01$

- 4 plot matrix corresponds to binning shown on ($\mathrm{x}, \mathrm{Q}^{2}$) planes aboveThe impact of $y>0.01$ cut is negligibleHigher y cuts may start to shave away low p_{T} at high-x and low Q^{2}

Effects of y cut on $q_{T}\left(=P_{h}^{\perp} / z_{\text {pair }}\right)$
5x41 GeV

Compare to q_{T} versus y; black line indicates $y=0.01$

- Mean q_{T} will decrease a bit as y cut is increased

Smearing Disabled
$18 \times 275 \mathrm{GeV}$

Aside: Alternative methods for calculating ($\mathrm{x}, \mathrm{Q}^{2}$)

Study from Anselm

Fraction of events staying in bin (10x100)

Fraction of events staying in bin (10x100)

Aside: Alternative methods for calculating ($\mathrm{x}, \mathrm{Q}^{2}$)

Study from Anselm

Fraction of events staying in bin (18×275)

Fraction of events staying in bin (18×275)

Aside: Alternative methods for calculating ($\mathrm{x}, \mathrm{Q}^{2}$)

Fraction of missing energy, from acceptance limits
Larger fraction at low-y \rightarrow correlates to inaccuracy of ($\mathrm{x}, \mathrm{Q}^{2}$)

Pion Momentum

5x41 GeV

π^{+}, for $1<Q^{2}<3$ and $1 e-05<x<0.025$

π^{+}, for $1<Q^{2}<3$ and $0.025<x<1$

$18 \times 275 \mathrm{GeV}$
π^{+}, for $10<Q^{2}<3000$ and $1 e-05<x<0.005$

π^{+}, for $1<Q^{2}<10$ and $1 \mathrm{e}-05<x<0.005$

π^{+}, for $10<Q^{2}<3000$ and $0.005<x<1$

π^{+}, for $1<Q^{2}<10$ and $0.005<x<1$
Radius set at 30 GeV ; compare to next slide's zoomed plotSmearing with eic-smear enabled \rightarrow acceptance cuts at $|\eta|=3.5$This is for $\pi+$ of $\pi+\pi$ - dihadrons, but the π - looks the same

Pion Momentum

5x41 GeV

π^{+}, for $1<Q^{2}<3$ and $1 e-05<x<0.025$

π^{+}, for $3<Q^{2}<3000$ and $0.025<x<1$

π^{+}, for $1<Q^{2}<3$ and $0.025<x<1$

$18 \times 275 \mathrm{GeV}$
π^{+}, for $10<Q^{2}<3000$ and $1 e-05<x<0.005$
π^{+}, for $10<Q^{2}<3000$ and $0.005<x<1$

π^{+}, for $1<Q^{2}<10$ and $1 \mathrm{e}-05<x<0.005$

π^{+}, for $1<Q^{2}<10$ and $0.005<x<1$
Radius set at 10 GeVSmearing with eic-smear enabled \rightarrow acceptance cuts at $|\eta|=3.5$This is for $\pi+$ of $\pi+\pi$ - dihadrons, but the π - looks the sameSome backward production at low x

Pion Momentum vs. Pseudorapidity
5x41 GeV

Smearing disabled, to show activity beyond acceptance cuts

- Enabling smearing does not alter the shape of the distributions muchLines for $|\eta|=3.5$ are shownAcceptance cuts only effect $p<\sim 4 \mathrm{GeV}$$\pi / \mathrm{K} / \mathrm{p}$ separation up to $\mathrm{p} \sim 8 \mathrm{GeV}$ is sufficient

Pion Transverse Momentum vs. Pseudorapidity
Smearing Disabled

\square Smearing disabled, to show activity beyond acceptance cuts

- Enabling smearing does not alter the shape of the distributions muchHorizontal lines for $|\eta|=3.5$Impact of acceptance cuts is primarily on low p_{T}, well below the 500 MeV threshold (vertical lines)

Effects of η cuts on q_{T}

Smearing Disabled

$5 \times 41 \mathrm{GeV}$

Plots show $q_{T}=P_{h}{ }^{\perp} / z_{\text {pair }}$
vs. η of $\pi+$

- Smearing disabled, to show activity beyond acceptance cutsVertical lines for $|\eta|=3.5$
- Little impact of acceptance cuts on q_{T}

Effects of p_{T} cuts on q_{T}

Smearing Disabled

$5 \times 41 \mathrm{GeV}$

Plots show q_{T} vs. p_{T} of $\pi+$

- Smearing disabled, to show activity beyond acceptance cutsVertical lines $p_{T}=500 \mathrm{MeV}$Higher p_{T} cuts may have mild impact at low q_{T}

Dihadron Kinematics: Invariant Mass

5x41 GeV

$\pi^{+} \pi M_{n}$ distribution, for $1<Q^{2}<3$ and $1 e-05<x<0.025$

$\pi^{+} \pi^{-} \mathrm{M}_{\mathrm{h}}$ distribution, for $1<\mathrm{Q}^{2}<3$ and $0.025<x<1$

$18 \times 275 \mathrm{GeV}$

$\pi^{*} \pi M_{n}$ distribution, for $1<Q^{2}<10$ and $1 e-05<x<0.00$

$\pi^{+} \pi \pi_{n} M_{n}$ distribution, for $10<Q^{2}<3000$ and $0.005<x<1$

$\pi^{+} \pi^{-} M_{h}$ distribution, for $1<Q^{2}<10$ and $0.005<x<1$

- Strong K_{s} peak seen, not smeared very much
- peak also visibleNot much dependence on $\mathrm{x}, \mathrm{Q}^{2}$, or $\sqrt{ } \mathrm{s}$

Dihadron Kinematics: Azimuthal correlations $\boldsymbol{\phi}_{\mathrm{h}}$ vs. $\boldsymbol{\phi}_{\mathrm{R}}$
$18 \times 275 \mathrm{GeV}$

$\pi^{+} \pi^{*} \phi_{h}$ vs. ϕ_{R}, for $1<Q^{2}<3$ and $0.025<x<1$

$\pi^{+} \pi \phi_{\mathrm{h}}$ vs. ϕ_{R}, for $10<Q^{2}<3000$ and $1 \mathrm{e}-05<x<0.005$

$\pi^{+} \pi \phi_{h}$ vs. $\phi_{R^{\prime}}$ for $1<Q^{2}<10$ and $1 e-05<x<0.005$

$\square \phi_{h}$ peaks at $\pm \pi$ indicate a strong tendency of dihadron momentum sum P_{h} to be in lepton scattering plane, with $\mathrm{P}_{\mathrm{h}}{ }^{\perp}$ opposite of $\mathrm{p}_{\mathrm{e}}{ }^{\perp}$, where " \perp " denotes the plane transverse to q

- Similar shape seen in ϕ_{h} of single hadrons
ϕ_{R} peaks at $\pm \pi$ and 0 indicate the hadrons also tend to be within the lepton scattering plane
These shapes are also present in the generated (not smeared) sample

Dihadron Kinematics: CoM Frame Production Angle

- θ represents the "decay" angle of the hadron pair, in the rest frame of the dihadronDihadron Fragmentation Functions are expanded in partial waves, parameterized by θ
- Sensitivity to ss, sp, pp interference of dihadroproductionIdeal distribution follows a $\sin \theta$ shapeDouble peaking visible at low-x and high Q^{2}

Dihadron Kinematics: $\boldsymbol{\theta}$ vs. \mathbf{P}_{h}

$18 \times 275 \mathrm{GeV}$

$\pi^{+} \pi^{*} \theta$ vs. p, for $1<Q^{2}<10$ and $0.005<x<1$

PID Performance

Using 2σ separation:

Using 3σ separation:

- Fraction of reconstructed $\pi \pi$ pairs
- Fraction of reconstructed $\pi \boldsymbol{K}$ pairs
- Fraction of reconstructed KK pairs

Study from Anselm

PID Performance

π^{0} Reconstruction with $\mathrm{E}_{\mathrm{y}}>200 \mathrm{MeV}$

η Reconstruction with $\mathrm{E}_{\gamma}>200 \mathrm{MeV}$

Summary and Outlook

- Dihadrons access several aspects of the nucleon:
- Spin-momentum correlations in hadronsization
- Transverse-momentum dependent PDFs
- Twist-3 TMD PDFs
- EIC simulation studies are well underway
- Next Steps:
- Asymmetry projections, including partial wave sensitivity
- Study other dihadron channels, including kaons

