Progress in EIC Spectroscopy

Justin Stevens

XYZ states

- Many new states observed in the last ~decade
- Not predicted by the standard charmonium models
- Many models for interpretation: resonant states, meson molecules, re-scattering effects, etc.

$$e^+e^- \to \pi^+\pi^- J/\psi \ (4260 \ {\rm MeV})$$

- Modeled through vector meson dominance and X(3872)→J/ψρ decay width
- * Ongoing work on Reggeization and contribution from ω exchange

Joint Physics Analysis Center Szczepaniak, Pilloni, Hiller Blin, Winney, Albaladejo, Mathieu

Theoretical developments

- *u*-channel exchange of pentaquark leads to "backward" going J/ψ
- * P_c couplings from Winney et al. [JPAC], PRD 100 (2019) 034019
- * Ongoing studies of other baryon trajectories

Joint Physics Analysis Center Szczepaniak, Pilloni, Hiller Blin, Winney, Albaladejo, Mathieu

- * Event generators need a virtual photon flux to convolute with photoproduction cross sections
- * There are many possibilities in the literature (and in current use!)

Virtual photon flux

Derek Glazier (Glasgow)

* Event generators need a virtual photon flux to convolute with photoproduction cross sections

* There are many possibilities in the literature (and in current use!)

EIC Spectroscopy

$\texttt{Example epn^+n^-} \rightarrow \texttt{EICsmear}$

Smearing example: Z⁺_c(3900)

* Model prediction that photoproduction is enhanced at threshold

- * Unknown $Z_c \rightarrow J/\psi \pi$ decay width drives total cross section
- * Pomeron background at higher COM energies

Smearing example: Z⁺_c(3900)

Simple generator convolutes yp flux with model cross section https://bitbucket.org/jrsteven/genxyz/src/master/

* Assume low energy electron and proton beams: $E_p = 41 \text{ GeV}$ and $E_e = 5 \text{ GeV}$

* Z_c and subsequent decays are boosted in proton direction

* Low-Q² electron and neutron very close to beamline

$Z_c^+(3900)$ at an EIC $Z_c^+ \rightarrow J/\psi \pi^+ J/\psi \rightarrow e^+ e^-$

* Decay e[±] and π⁺ boosted in proton direction: detector requirements can depend strongly on production with CM energy

Background studies: e/π requirements

- * First background study with normalized
 - * 10M inclusive Pythia events: $\sigma \sim 10 \ \mu b$
 - * 10k Z_c events: $\sigma \sim 10$ nb, (optimistic?) model prediction
- * e/π separation required to identify J/ ψ (ad-hoc, not in eic-smear)
- * No exclusive requirement yet (low-Q² tagger or neutron in ZDC)

Background studies: e/π requirements

- * First background study with normalized
 - * 10M inclusive Pythia events: $\sigma \sim 10 \ \mu b$
 - * 10k Z_c events: $\sigma \sim 10$ nb, (optimistic?) model prediction
- * e/π separation required to identify J/ ψ (ad-hoc, not in eic-smear)
- * No exclusive requirement yet (low-Q² tagger or neutron in ZDC)

Handbook detector: CME comparison

* D⁰ decay K⁻ and π^+ boosted in proton direction (π/K separation), but low momentum and large η bachelor π^+ from D* decay

Progress since Temple and Next steps

- Integrate generators with EIC software good progress
 Signal: ππ, J/ψ + Νπ, DD + Νπ and JPAC models X, P_C
 Reckground: DYTHIA other inclusive?
 - * Background: PYTHIA, other inclusive?
- * Smearing studies of acceptance and resolution ongoing
 - * eic-smear needs: PID (e/ π and π /K), vertex resolution, and forward detector expectations
- * Formulate sensitivity plots and tables for YR: different COM energies, limits on couplings, etc.
- * Many groups participating: JPAC, JLab, Florida State, Indiana, W&M, Glasgow, INFN, Regina. More welcome!

Backup

Why spectroscopy?

- * EIC provides access to heavy quark spectroscopy not available in fixed target experiments
 - * XYZ states in e⁺e⁻ (Belle, BESIII) and at the LHC
 - * New charm and bottom baryons at LHCb, etc.
- * Additional thoughts and motivations:
 - Spectroscopy is a "new" community for the EIC; less developed, but additional workforce
 - But this is not a new idea: see EIC UG meeting <u>https://indico.in2p3.fr/event/18281/contributions/73004/</u>

What's been done already?

* Presentations at EIC Users Group Meetings

- * 2016: "Opportunities in Photoproduction and Spectroscopy at an EIC" <u>JRS</u>
- * 2019: "New proposal: light and heavy quark spectroscopy at EIC" <u>Battaglieri and Pilloni</u>
- # ECT* workshop December 2018
 - * Many presentations on worldwide spectroscopy programs and possibilities at the EIC
- Request from Yellow Report conveners for contribution on spectroscopy

Spectroscopy synergy with WGs

Some synergies with other Physics WGs:

- * Reconstructing beam remnant(s) requires near beamline detectors (Exclusive/Tagging)
 - * Roman pots, ZDC, and low-Q² e⁻ tagger
- * Open charm decays require displaced vertex detection (Jet/HF)
- * Lepton identification (similar to exclusive VM)
- Integration with Software WG critical to establish consistent smearing with other studies

Yellow Report efforts

Goal: Use "representative" channel(s) for spectroscopy to determine detector requirements

*** Steps in the process:**

- * Discussion of relevant final states and production processes for the EIC (done)
- * Write event generators for above processes (ongoing)
- Simulation/smearing of generated events in EIC detector framework(s) to see how observables depend on acceptance, resolution, etc.
- Write physics case and detector requirements in YR

Previous experience at COMPASS

- Result from Compass in µ+p to search for Z_c(3900)
 - Most √s_{yp} far above threshold
 - * Already some constraints on $Z_c \rightarrow J/\psi \pi$ decay width?
- What could the EIC do in e+p?

EIC Spectroscopy

Polarization in spectroscopy

 $\gamma p \to Z_c^+(4430)n$

- * Highly polarized beams already in baseline EIC
- * Polarized beam and target asymmetries possible
- * Additional observables to determine J^P, etc.

