Initial State Radiation (Bremsstrahlung): A tool for varying \sqrt{s} on an event-by-event basis for exclusive processes
 Nin Charles Hyde, Christian Weiss

Diffraction \& Exclusive physics working subgroups

Pavia EIC YR Meeting

Initial State Radiation (ISR)

- Variable $\sqrt{ } s$ in $e^{+} e^{-}$collisions
- Exclusive processes with full reconstruction of the hadronic final state

- Infer the missing photon (dominated by angles m_{e} / E_{e})
- Timelike Proton form factor doi:10.1103/PhysRevD.88.072009
- MAMI Proton Charge Radius Experiment
- M. Mihovilovic et al, arxiv.org/pdf/1905.11182.pdf
- Access to ultra low Q^{2}
- Look at the Radiative tail, rather than the exclusive peak

Why Vary \sqrt{s} ?

- Dynamic kinematic range without varying beam parameters
- Cross section too small, or scattering kinematics undetectable, at full energy
- Wide Angle Compton Scattering: $\gamma+p \rightarrow \gamma+p: \quad \frac{d \sigma}{d t} \propto s^{-6}$
- JLab12: $s=20 \mathrm{GeV}^{2}$ (Hall C, 2022)
- 0° Electron lost in beam at EIC at such a low $s_{\gamma}=W^{2}$
- ISR (1 real + 1 quasi-real photon) \rightarrow Final state electron in forward tagger
- Separation of $\left[\epsilon(y) d \sigma_{L}+d \sigma_{T}\right]$ into $d \sigma_{L}$ and $d \sigma_{T}$
- $e p \rightarrow e p \pi^{0}, e p \rightarrow e p \eta$
- $d \sigma_{L} \approx|G P D|^{2} \quad d \sigma_{T} \approx \mid$ Transversity-GPD $\left.\right|^{2}$
- [Goldstein, Hernandez, Liuti], and [Goloskokov, Kroll]
- ISR required to get sufficient lever arm on $\epsilon(y), \quad y=q \cdot P /(k \cdot P)$

Example study of Bethe-Heitler

- ISR for elastic ep scattering
- Modified code of Guichon, Vanderhaeghen, et al.
- Crossing angle implemented, Beam smearing feasible, not implemented
- Cross section weighting
- Full $1^{\text {st }}$ order radiative correction available in code (not utilized)
- $\left(10 \mathrm{GeV} / \mathrm{c} e^{-}\right) \otimes(100 \mathrm{GeV} / \mathrm{c} p)$
- Photon radiated in 3 mr cone around electron direction
- Part of the pile-up of brem photons in the 0° Luminosity monitor

ep \rightarrow ep $\gamma \quad 10 \otimes 100 \mathrm{GeV}^{2}$

Single Kinematics: $-\left(P^{\prime}-P\right)^{2}=10 \mathrm{GeV}^{2}$

- Radiated photon: $20 \%<q^{\prime} / k_{e}<80 \%$

Electron mom. vs. θ

Proton Py/Pz vs Px/Pz

ep $\rightarrow e p \gamma \quad 10 \otimes 100 \mathrm{GeV}^{2}$

$10 \leq-\Delta^{2}=-\left(P^{\prime}-P\right)^{2} \leq 20 \mathrm{GeV}^{2}$

- Radiated photon: $20 \%<\mathrm{q}^{\prime} / \mathrm{k}_{\mathrm{e}}<80 \%$

Electron mom. vs. θ

Proton Py/Pz vs Px/Pz

Things to do

- Make "Pavia" plots
- Normalize yields (currently only relative)
- Other processes (e.g. ep $\rightarrow e p \pi^{0}+0^{\circ} \gamma$)
- Evaluation of post-radiation $\epsilon\left(\gamma^{*}\right)$
- Evaluation of post-radiation electron polarization
- Naively, electron polarization $=-P_{0}\left(1-q^{\prime} / k\right)$
- Acceptance, Resolution
- "standard" ϵ in backup

Degree of Longitudinal Polarization of Virtual Photon

- $\epsilon^{-1}=\left[1+\frac{y^{2}(1+\delta)}{2\left(1+y-y^{2} \delta / 4\right)}\right]$
- $y=(q \cdot P) /(k \cdot P)$
- $\delta=\frac{Q^{2} M^{2}}{(q \cdot P)^{2}}=\frac{4 x_{B}^{2} M^{2}}{Q^{2}} \ll 1$
- $(1+\delta)=\left[1+\mathrm{Q}^{2} / v^{2}\right]_{\text {Target Rest }}$

ϵ in EIC Kinematics

- Contours of constant $\left(Q^{2}, x_{B}\right)$
- For each linestyle, Q^{2} increases from left to right
- For each color, x_{B} increases from right to left

