Initial State Radiation (Bremsstrahlung): A tool for varying \sqrt{s} on an event-by-event basis for exclusive processes Charles Hyde, Christian Weiss **Jefferson Lab**

Diffraction & Exclusive physics working subgroups Pavia EIC YR Meeting

Initial State Radiation (ISR)

- Variable \sqrt{s} in e^+e^- collisions
 - Exclusive processes with full reconstruction of the hadronic final state

- Infer the missing photon (dominated by angles m_e/E_e)
- Timelike Proton form factor doi:10.1103/PhysRevD.88.072009
- MAMI Proton Charge Radius Experiment
 - M. Mihovilovic et al, arxiv.org/pdf/1905.11182.pdf
 - Access to ultra low Q²
 - Look at the Radiative tail, rather than the exclusive peak

Why Vary 15?

- Dynamic kinematic range without varying beam parameters
- Cross section too small, or scattering kinematics undetectable, at full energy
 - Wide Angle Compton Scattering: $\gamma + p \rightarrow \gamma + p$: $\frac{d\sigma}{dt} \propto s^{-6}$
 - JLab12: *s*=20 GeV² (Hall C, 2022)
 - 0° Electron lost in beam at EIC at such a low $s_{\gamma} = W^2$
 - ISR (1 real + 1 quasi-real photon) \rightarrow Final state electron in forward tagger
 - Separation of $[\epsilon(y)d\sigma_L + d\sigma_T]$ into $d\sigma_L$ and $d\sigma_T$
 - $\circ ep
 ightarrow ep \pi^0$, $ep
 ightarrow ep \eta$
 - $d\sigma_L \approx |GPD|^2$ $d\sigma_T \approx |Transversity-GPD|^2$
 - [Goldstein, Hernandez, Liuti], and [Goloskokov, Kroll]
 - ISR required to get sufficient lever arm on $\epsilon(y)$, $y = q \cdot P/(k \cdot P)$

Example study of Bethe-Heitler

- ISR for elastic ep scattering
 - Modified code of Guichon, Vanderhaeghen, et al.
 - Crossing angle implemented, Beam smearing feasible, not implemented
 - Cross section weighting
 - Full 1st order radiative correction available in code (not utilized)
- (10 GeV/c *e*[−])⊗(100 GeV/c *p*)
 - Photon radiated in 3 mr cone around electron direction
 - Part of the pile-up of brem photons in the 0° Luminosity monitor

$ep \rightarrow ep\gamma$ 10 \otimes 100 GeV² Single Kinematics: $-(P' - P)^2 = 10 \text{ GeV}^2$

• Radiated photon: $20\% < q'/k_e < 80\%$

$ep \rightarrow ep \gamma \quad 10 \otimes 100 \text{ GeV}^2$ $10 \leq -\Delta^2 = -(P' - P)^2 \leq 20 \text{ GeV}^2$

• Radiated photon: $20\% < q'/k_e < 80\%$

Things to do

- Make "Pavia" plots
- Normalize yields (currently only relative)
- Other processes (*e.g.* $ep \rightarrow ep \pi^0 + 0^{\circ} \gamma$)
- Evaluation of post-radiation $\epsilon(\gamma^*)$
- Evaluation of post-radiation electron polarization
 - Naively, electron polarization = $-P_0(1-q'/k)$
- Acceptance, Resolution

• "standard" ε in backup

Degree of Longitudinal Polarization of Virtual Photon

•
$$\epsilon^{-1} = \left[1 + \frac{y^2(1+\delta)}{2(1+y-y^2\delta/4)}\right]$$

•
$$y = (q \cdot P)/(k \cdot P)$$

•
$$\delta = \frac{Q^2 M^2}{(q \cdot P)^2} = \frac{4x_B^2 M^2}{Q^2} \ll 1$$

• $(1+\delta)=[1+Q^2/\nu^2]_{\text{Target Rest}}$

e in EIC Kinematics

- Contours of constant (Q², x_B)
- For each linestyle, Q² increases from left to right
- For each color, x_B increases from right to left

