DEEPLY VIRTUAL MESON PRODUCTION Exclusive electro-production of vector mesons (focussed around J/psi)

Electro-Production at high energies:

- Access Gluon GPD: Full 3D tomography of the gluonic structure of the nucleon
- Matter radius of nuclei
- L-T Separation and Q² dependence of *R* for quarkonium production

Near Threshold:

- Origin of proton mass, trace anomaly of the QCD EMT
- Gluonic Van der Waals force, possible quarkonium-nucleon/nucleus bound states
- **Mechanism** for quarkonium production

This work is supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under contract DE-AC02-06CH11357.

S. Joosten

SENSITIVITY TO RECOIL TAGGING

- Need more sophisticated approach than handbook (which would make) recoil tagging impossible for low-energy operations!)
- Recoil acceptance disproportionately impacts the threshold region and high-t regions

ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

CONTROL BACKGROUND THROUGH MUON CHANNEL?

- Currently being evaluated using GRAPE-dilepton
- Assuming muon detection in tracker only minor drop in statistics
- However threshold measurements harder
- Extra muon detection in 3.5 < eta < 4.5 would be nice

ELECTRON ACCEPTANCE SUFFICIENT

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

BRAND NEW WORK ON UPSILON PRODUCTION AT EIC!

https://arxiv.org/abs/2005.09293

Υ photo-production on the proton at the Electron-Ion Collider

Oleksii Gryniuk,¹ Sylvester Joosten,² Zein-Eddine Meziani,² and Marc Vanderhaeghen¹

¹Institut für Kernphysik & PRISMA⁺ Cluster of Excellence, Johannes Gutenberg Universität, D-55099 Mainz, Germany ²Argonne National Laboratory, Lemont, IL 60439, USA (Dated: May 20, 2020)

We present a dispersive analysis with the aim to extract the Υ -p scattering length from $\gamma p \to \Upsilon p$ experiments. In this framework, the imaginary part of the Υ -p forward scattering amplitude is obtained from $\gamma p \to \Upsilon p$ cross section measurements, and is constrained at high energies from existing HERA and LHC data. Its real part is calculated through a once-subtracted dispersion relation, and the subtraction constant is proportional to the Υ -p scattering length. We perform a feasibility study for Υ photo-production experiments at an Electron-Ion Collider and discuss the sensitivity and precision that can be reached in the extraction of the Υ -p scattering length.

