Diffraction physics working subgroup

Photo/electro-production at an EIC

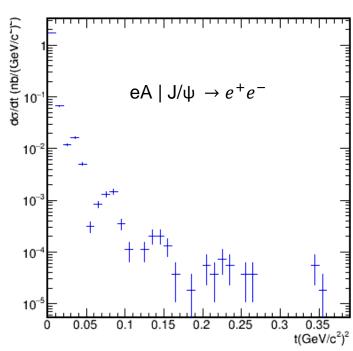
Samuel Heppelmann UC Davis & LBNL

Overview of eSTARlight

Coherent photonuclear cross-sections are parameterizations of $\sigma(\gamma p)$ from HERA/fixed target data or theory

Convolution of photon flux from electron with $\sigma(\gamma p -> Vp)$

Both depend on Q²


Weizsacker-Williams photon flux (with non-zero Q2)

Nuclear targets included with a Glauber calculation

Vector mesons retain the photon spin

- For Q² ~ 0, transversely polarized
- As Q² rises, longitudinal polarization enters
- Spin-matrix elements quantified with HERA data

Embodied in eSTARlight code, available at: http://estarlight.hepforge.org

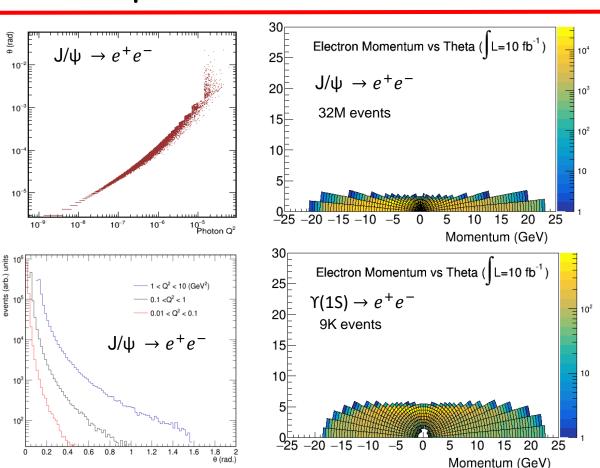
Summary of studied channels: kinematics

Please list channels where kinematic distributions have been studied and required coverages are available

Measurement/ process	Main detector requirement (if known/anticipated)	Expected plot for the YR	Physics goal/topic	Contact person	Comments
Electro/Photo- production J/ψ Upsilon 15, 25, 35	Central Detector Scattered Electron Forward Detector for nuclear fragments to separate coherent/incoherent	Gluon distributions as a function of x and b⊥	Gluon Dist. 3D Gluon imaging	S. Klein S. Heppelmann	Systems studied: e+p e (18 GeV) p (100 & 250 GeV) e+A e (18 GeV) A (100 GeV)

Summary of studied channels: fast simulations

Measurement/ process	Main detector requirement (if known/anticipated)	Expected plot for the YR	Physics goal/topic	Contact person	Comments
Electro/Photo- production J/ψ Upsilon 15, 25, 35	Central Detector Scattered Electron Requires less than 1% momentum resolution	Gluon distributions as a function of x and b1	Gluon Dist. 3D Gluon imaging	S. Klein S. Heppelmann	EICRoot Framework Detector Setups: • LBNL All-Si • BeAST

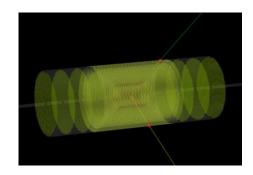

Channel 1: Electro/Photo-production

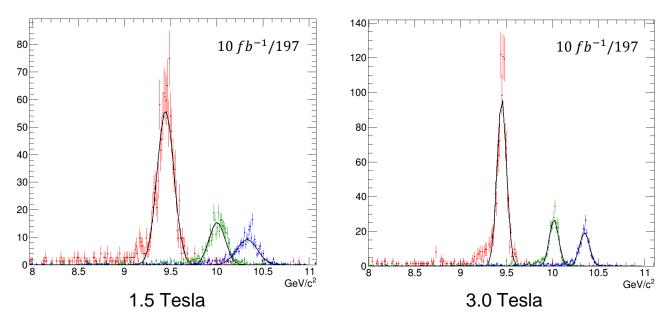
Photo/Electro-production: kinematics

e + p

Outgoing electron deflection angle:

For photoproduction $(Q^2 < 1 \text{ GeV}^2)$


Upsilon Events in EICRoot All-Silicon Detector


LBNL All-Silicon Detector

(Developed by LBNL's eRD16 generic EIC detector project)

- Silicon Tracker
- 6 layers
- Silicon Endcap Disks

6 disks

Upsilon peaks are still distinguishable with a lower B-Field

Conclusion

eSTARlight simulations for photoproduction & electroproduction at an EIC

Vector Mesons:

- $J/\psi \rightarrow e^+e^-$
- $\Upsilon(1S), \Upsilon(2S), \Upsilon(3S) \rightarrow e^+e^-$
- Acceptance of the J/ψ and $\Upsilon(1S)$.

Preliminary studies with eSTARlight in EICROOT (BeAST & LBNL All-Silicon Detectors)

- Reconstruction efficiency
- Detector resolution for different field strengths and acceptance cuts