The EIC IR and diffractive eA physics

WAN CHANG 2020/05/21

YR Meeting, May 2020

- e+Pb(BeAGLE)
 18 × 110 (GeV)
 1 < Q² < 10
 0.01 < y < 0.95
 1M events
- > The goal is to remove all the incoherent diffractive events
- Veto on forward neutrons, photons, protons

Neutron

Beagle distribution before cuts

10³

10²

10

1

Photon

Beagle Distribution before cuts

Photons to be detected in ECal part of ZDC Θ < 5.5 mrad

Challenge lowest detectable photon energy

Proton

Beagle Distribution before cuts

Protons to be detected in
Roman Pots: 0 – 5 mrad
B0-Si detectors: 5.5 – 20 mrad
off-p Si Detectors: 0 – 5 mrad

IR: Outgoing Hadron Beam

Layout and Acceptances

YR Meeting, May 2020

Event distribution

Back up

YR Meeting, May 2020

Species energy [GeV]	ep collision	18 × 110
Beam emittance [mm]	E_{χ}	33.1E-6
	$E_{\mathcal{Y}}$	2.4E-6
Beam energy spread D_p :RMS $\Delta p/p$ [mm]		6.8E-4
eta_x at Roman Pots [mm]		166E3
eta_y at Roman Pots [mm]		212E3
Dispersion at RP location D_{χ} [mm/E-3]		-0.21

YR Meeting, May 2020

Rigidity

rigidity is the effect of particular magnetic fields on the motion of the charged particles, it refers to the fact that a higher momentum particle will have a higher resistance to deflection by a magnetic field.

Forward proton acceptance in e+A is DIFFERENT from e+p.

YR Meeting, May 2020