Summary of NLO QCD studies of diffractive dijet photoproduction at EIC

Vadim Guzey

Petersburg Nuclear Physics Institute (PNPI), National Research Center "Kurchatov Institute"

Work done in collaboration with **M. Klasen**, arXiv: 2004.06972, JHEP05 (2020) 074

• Diffractive dijet photoproduction at EIC can help constrain proton diffractive PDFs and measure novel nuclear diffractive PDFs and effect of nuclear shadowing.

• In base EIC energy setting, our NLO pQCD approach predicts rates for $p_T < 8 \text{ GeV}, x_{\gamma} > 0.5$, $|\Delta \eta| < 1.5$, $x_P > 0.01$, and $z_P > 0.4$.

• At EIC, the dijet photoproduction cross section is dominated by the direct photon contribution and gluon diffractive PDF.

• This process can solve the problem of the mechanism/pattern of factorization breaking in diffractive DIS: global suppression vs. resolved-only.

• For this, the most promising observable is x_{γ} dependence. To have wide coverage in x_{γ} , one needs the highest Ep and/or large range in x_{P} .

2nd EIC Yellow Report Workshop at Pavia University, 21 May 2020

NLO QCD predictions for EIC

• Main features:

- $p_T = (p_{T1}+p_{T2})/2$ coverage up to 8 GeV

– dominated by direct photon contribution, i.e. large x_{γ} > 0.5 \rightarrow challenging to address factorization breaking

– dominated by large x_P and $z_P \to$ probes mostly diffractive gluon density.

QCD predictions for EIC: factorization breaking

• Main features:

- Most promising observable is x_{γ} dependence \rightarrow need wide coverage and high precision since the cross section drops.

- The rest of distributions differ mostly in normalization.

NLO QCD predictions for diffractive dijet photoproduction on nuclei at EIC

4