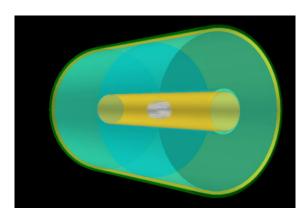
2nd EIC Yellow Report Workshop Pavia University (online), 20-22 May 2020

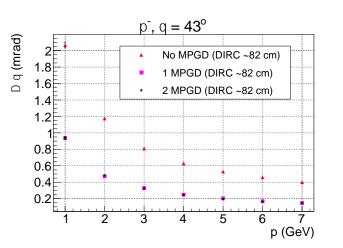
Parallel session Calorimeter & Particle ID & Tracking Tracking summary

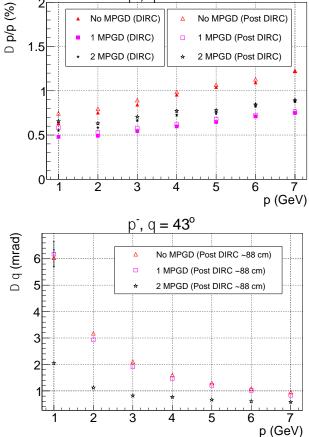
D. Elia, K. Gnanvo, L. Greiner for the Tracking WG

2nd EIC-YR Workshop / Pavia University / 20-22.5.2020

Ongoing activities and available results

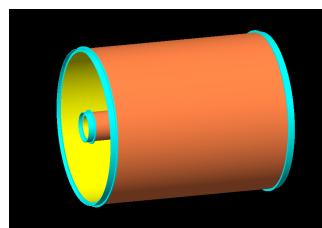

Ongoing activities:


- □ Working on the following main deliverables:
 - Evaluate all-silicon vs hybrid (silicon & gaseous) trackers
 - o Compare realistic alternatives (TPC, MPGD options) for gaseous detectors, barrel and forward
- □ Preliminary performance studies (mainly EicRoot-based simulations):
 - Central region Si-vertex + TPC + Fast MPGD Layers advanced
 - Cylindrical Micromegas (MPGDs) just started
 - Endcap region GEM (MPGDs) trackers just started
 - All-silicon (barrel) tracker + forward/backward silicon disks advanced
 - Comparisons all-silicon vs BeAST (Si-vertex + TPC + MPGDs) concepts ongoing
- **Effort on Fun4All and ESCalate frameworks:**
 - o first implementations of all-silicon tracker in Fun4All and G4E ongoing
 - o plan to implement realistic material and services for all the tracking detectors just started
- Available results:
- Relative momentum and pointing resolutions (in different configurations and options)
- Angular resolutions at DIRC (Si-vertex + TPC + Fast MPGDs different options)


Si vertex + Gaseous Tracking

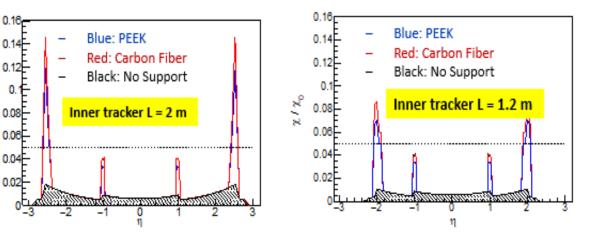
Si-vertex + TPC + Fast MPGD layers

- \Box Si-vertex tracker: 4 layers of 20 $\mu m \times$ 20 μm
- □ TPC: No distortion corrections, field cage and end cap materials included
- 3 configurations investigated
 - $\circ~$ No MPGDs
 - $\,\circ\,$ One (or two) outer MPGD layers in front (or "sandwiching") of DIRC
 - $\,\circ\,$ One Inner MPGD layers: fast and calibration for TPC detector



 $p^{-}, q = 43^{\circ}$

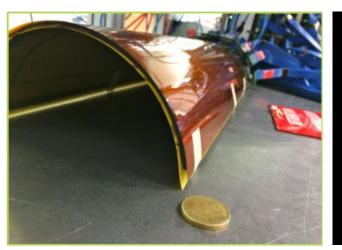
Mock prototype (support ring)



Matt Posik, for eRD6

Material budget studies

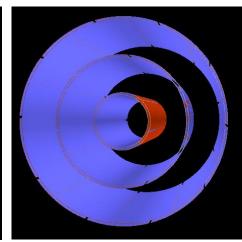
- **α** additional **inner μRWell:** Fast signal & calibration for TPC
- Detector configuration; Fast layers in barrel region
 - \circ Outer μ RWell layers: L =2 m; radius = 80.0 cm
 - $\circ~$ Inner $\mu RWell$ layer: L = 1.2 or 2 $\,$ m; radius = 12.5 cm $\,$
 - $\circ~$ Impact of length & support structure on radiation length



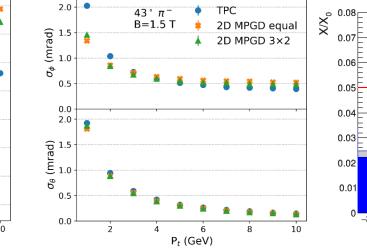
Si vertex + Gaseous Tracking

Qinhua Huang, CEA Saclay

Si-vertex + Cylindrical MPGDs

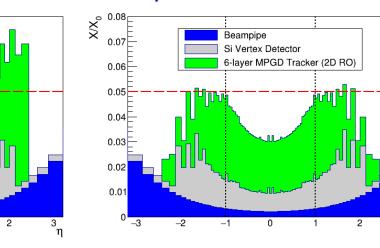

- Barrel MPGD tracker as TPC alternative:
 - Curved MPGD tiles with low material budget 0
 - Micromegas technology is being used in CLAS12 0
 - Possibly readout 2D coordinates on a single Ο layer
- Simulation and performance study are under the ePhenix context
 - ePhenix TPC is replaced with the tracker 0
 - R is from 20 to 80cm, 2 configs are studied 0
- Compare material budget for TPC and 2D MPGD
 - Both TPC & 2D MPGD tracker compatible with 0 X/X0<5% requirement for central tracker


 $X/X0 \sim 0.3\%$ per layer



6 equidistant layers

6 layers arranged as 3x2



Si Vertex Detector

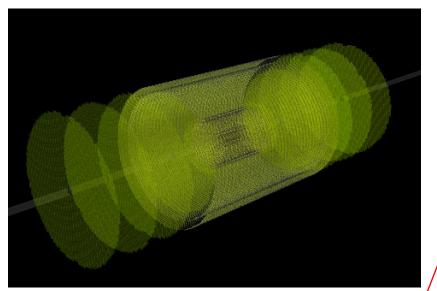
Beampipe

TPC

6-layer 2D RO MPGD tracker

2nd EIC-YR Workshop / Pavia University / 20-22.5.2020

-2


-3

Gaseous Detectors: technology input for complementarity

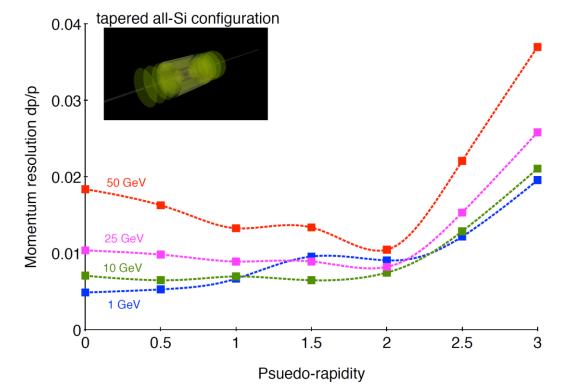
	TPC + Fast MPGD Layer	Cylindrical MPGD (Micromegas, μRWELL)	Drift Chambers / Straw Tubes	Planar MPGDs (GEM, Micromegas, μRWELL)	Small TGCs	MPGD-TRDs
Barrel region	 Pros: momentum res.; additional dE/dx; cost Low material in barrel 	 Pros: Space point & angular res. Time resolution (< 10 ns) Low material in End cap Cost & robustness 	 Pros: momentum res.; additional dE/dx; cost Low material in barrel 	 Pros: Alternative to cylindrical MPGDs arrangement in polygons Easier fabrication 	N/A	N/A Radiator size
	Cons: - End cap material - calibration space charge distortion	Cons: - Momentum res. - Fabrication challenges - Material budget in barrel	Cons: - End cap material - calibration - Stability issues	Cons: - Momentum res. - Detector space barrel - Material budget in barrel		
Hadron End Cap	N/A Only planar option		Pros: - momentum res.; - additional dE/dx; - cost	 Pros: Momentum & angular res. Low material (< 0.4% X/X0 per layer) Cost & robustness 	 Pros: Momentum & angular res. Cost & robustness 	 Pros: Additional tracking Angular res. for RICH Additional e/π PID
			Cons: - Material budget - calibration - Stability issues	<u>Cons:</u> - ?	Cons: - Material budget	Cons: - Radiator size
Electron End Cap	N/A Only planar option		N/A	 Pros: Momentum & angular res. Low material (<0.4%) Cost & robustness 	N/A Mainly because of material budget	Pros: - Additional tracking - Complement main e PID in electron end cap
				Cons: - ?		Cons: - Radiator size?

Ernst Sichtermann et al, eRD16

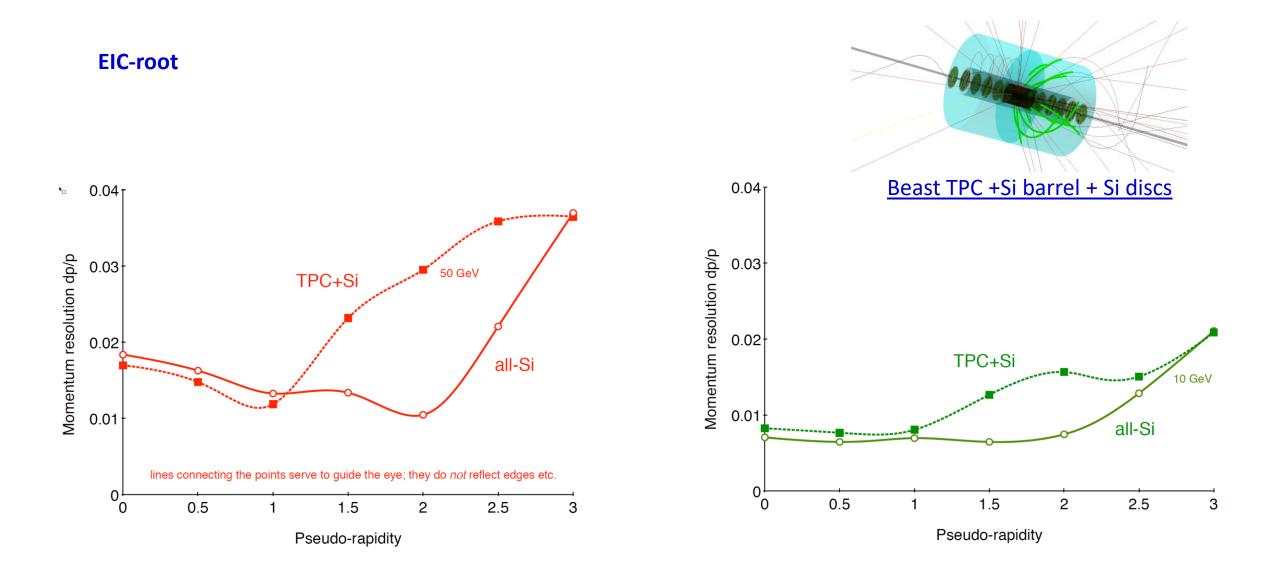
All silicon inner detector design

: 29.6 cm

20

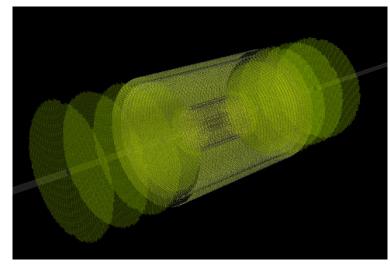

86.46:cr

2

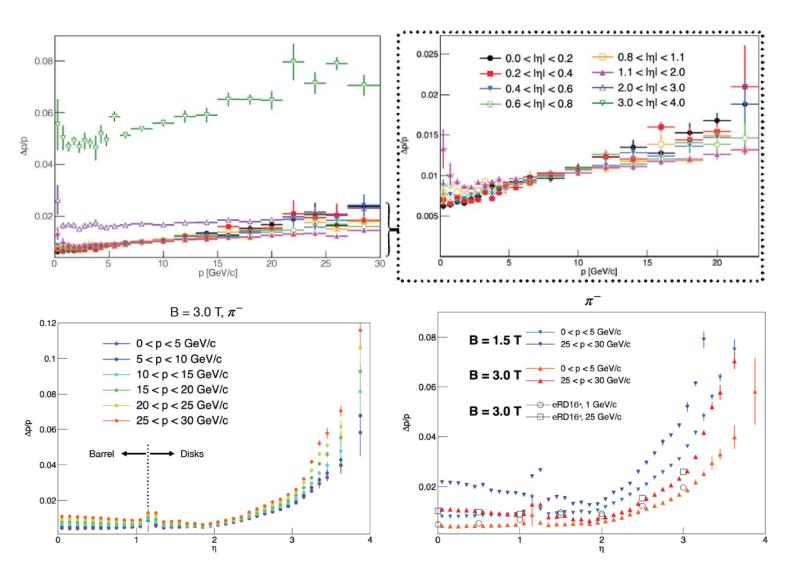

EIC-root tapered all-Si configuration, r ~ 43cm

□ Multiple configurations simulated, tapered all Si configuration shown.

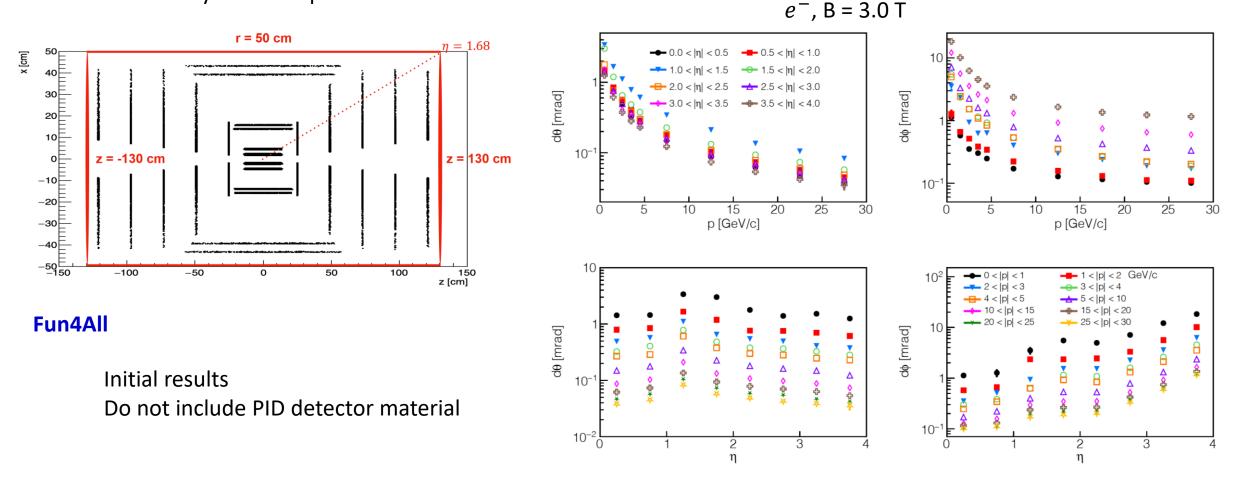
- An all-silicon tracker, two eRD18 vertex layers, seven eRD16, "tapered", equidistant disks in a BeAST configuration, and an ALICE-like outer barrel, in a 3T solenoidal field
- \Box Identical barrel configurations, identical in length (z) to BeAST.
- Material cones/cylinders (5mm Al) surrounding the disks were implemented to make a start on the effects associated with support structures, read-out infrastructure, etc.; studies started/in progress.



<u>Comparisons of (Beast TPC +Si barrel + Si discs) with all silicon design (TPC replaced with 5 Si barrel layers)</u>

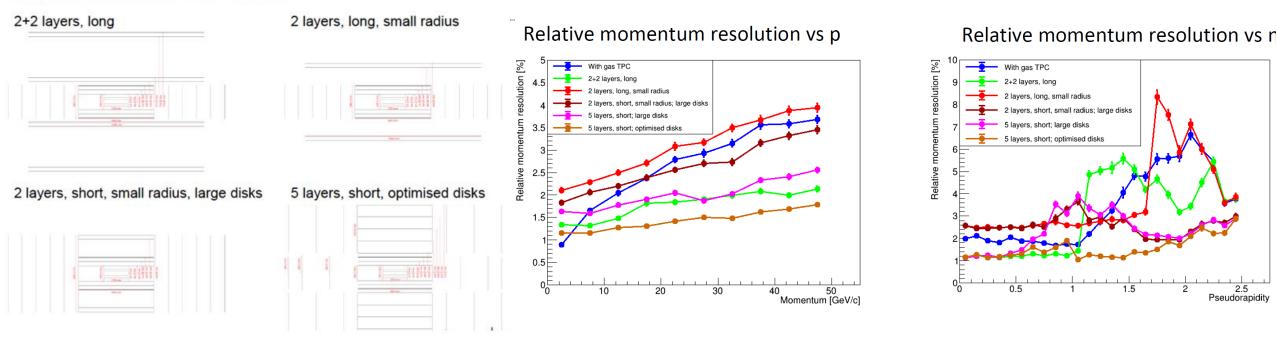

All silicon inner detector design

The "tapered all-Silicon" model from ERD16 implemented in Fun4All


Fun4All

Performance very good and consistent with ElCroot modeling

All silicon inner detector design – angular resolution at PID locations


Again – using the "tapered all-silicon" model with Functionality added by Chris Pinkenburg to project momenta onto cylinders or planes

All silicon inner detector design and comparison with Beast TPC

Many silicon geometries simulated – see tracking notes for full list

Key layouts and their aliases

EICroot

- Large disk coverage is important to keep resolution at higher η
- □ All-silicon layout can outperform Si+TPCat $p \ge 5$ GeV/c
- Pointing resolutions do not change much between layouts, apart when layers are missed

Tracking WG: technology input for complementarity

Tracking Si central detector (vertex + barrel + discs)

Technology: for the vertex, barrel and inner disc detectors, the only identified technology that meets the requirements are MAPS. No currently existing MAPS sensor appears to fully meet all of the EIC requirements (current simulations are based on ALPIDE sensors with a smaller pixel size 20 x 20 um²). In order to produce a new sensor design that meets the EIC requirements a consortium of EIC groups are joining an ongoing sensor development effort at CERN. There are contingency plans for modification of existing sensor designs to meet EIC requirements should this CERN effort be unsuccessful.

There is general consensus that this is a promising path to pursue to deliver an EIC sensor in the given timeframe. Momentum and pointing resolution performance studies are in progress. EIC requirements seem satisfied.

Si + gaseous detector vs. all silicon

ITS3 silicon design parameters

Parameter	Wafer-scale sensor (this proposal)	
Technology node	65 nm	
Silicon thickness	20-40 μm	
Pixel size	O(10 x 10 µm)	
Chip dimensions	scalable up to 28 x 10 cm	
Front-end pulse duration	~ 200 ns	
Time resolution	< 100 ns (option: <10ns)	
Max particle fluence	100 MHz/cm^2	
Max particle readout rate	100 MHz/cm ²	
Power Consumption	$< 20 \text{ mW/cm}^2$ (pixel matrix)	
Detection efficiency	> 99%	
Fake hit rate	< 10 ⁻⁷ event/pixel	
NIEL radiation tolerance	10^{14} 1 MeV n_{eq}/cm^2	
TID radiation tolerance	10 MRad	

	Stave X/X0
ITS3 like vertexing	~0.1%
ITS3 like barrel (up to 1.5m length)	0.55 %
ITS3 like disc (up to 60 cm diameter)	0.24%

	Si + gaseous	All Si		
Attributes for consideration	 dE/dx in gas for PID Well understood technology - less R&D needed. Costs less (likely) Less material in tracking region Worse single point resolution but more position samples 	 Readout faster than TPC Better momentum resolution than TPC at higher momentum (>~5GeV/c) Can be made more compact Less material in endcap regions Fewer calibration/correction issues Very high single point resolution 		