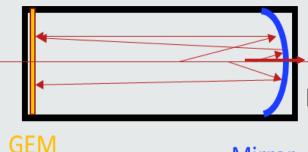
## Particle Identification (PID)

- Barrel, h-Arm, e-Arm
  - GEM RICH, mRICH, dRICH, DIRC, TOF
    - Pro/Con matrix
    - Requirements on "external" systems

Thomas K. Hemmick Patrizia Rossi







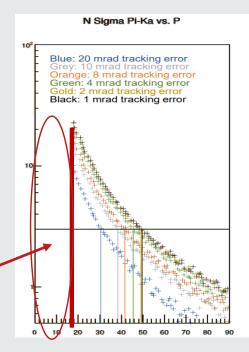


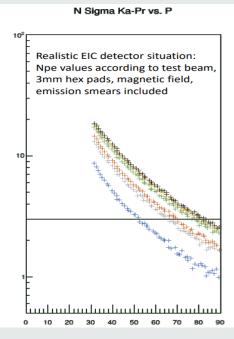

# Summary Table

|                                                                | p-Range (GeV) @<br>Radiator L        | Contr. Ց <sub>c</sub>                                                      | Param. | Pro/Con | Ext Const                            | MONTECARLO Simulatoin                                      |
|----------------------------------------------------------------|--------------------------------------|----------------------------------------------------------------------------|--------|---------|--------------------------------------|------------------------------------------------------------|
| psec TOF<br>LGAD TOF                                           | Up to 10 Depends on $\sigma_T$ and L | NO                                                                         | ~YES   | YES     | ~ YES                                | NO                                                         |
| dual RICH<br>(aerogel, gas)                                    | 2-60 @ 1.6 m                         | YES  Chroma Emission Pixel Field Tracking                                  | YES    | YES     | YES • Simulated constant w/ momentum | YES  • GEMC/Geant4  • Al-driven Optimization               |
| GEM RICH<br>(Gas Electron<br>Multipliers)                      | 20-50 @1m                            | <ul><li>Chroma</li><li>(Emission)</li><li>Pixel</li><li>Tracking</li></ul> | YES    | YES     | YES                                  | YES                                                        |
| modular RICH<br>(mRICH)                                        | 2-10 @ 3 cm                          | YES  Chroma Emission Pixel Tracking                                        | ~YES   | YES     | YES<br>(tracking)                    | <ul><li>YES</li><li>GEMC/Geant4 work in progress</li></ul> |
| Detection of<br>Internally<br>Reflected<br>Cherenkov<br>(DIRC) | 0.8-6 @ 1.7 cm                       | YES  • Tracking  • Mult. Scat  • Chroma, Emission, pixel                   | YES    | YES     | YES                                  | YES • GEMC/Geant4 without B-field                          |

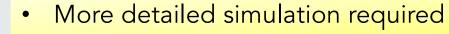
- 1m of CF<sub>4</sub> radiator at 1.003 bar (slightly overpressure)
- Csl Photocathode on top GEM
- Particles ~perpendicularly incident on spherical mirror, focused onto a GEM stack directly



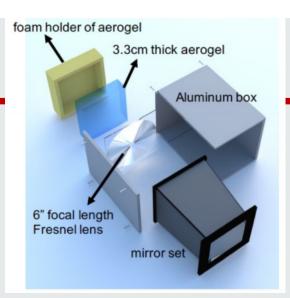

#### Mirror


#### Pro

- Sensor insensitive to B-field
- Short (12pe/m windowsless)
- Thin photo-cathode leads to more ideal optics.


#### Con

- Unknown how to bridge the gap in  $\pi$ -K
- Loses light with contaminants
   @ few ppm level -> requires
   superb gas system
- Photo-cathode in high radiation zone.






- Tracking is leading error contribution if worse than ~7mrad.
- Negligible resolution factor around 2 mrad.
- Between 2 and 7mrad, more detailed investigation is required.





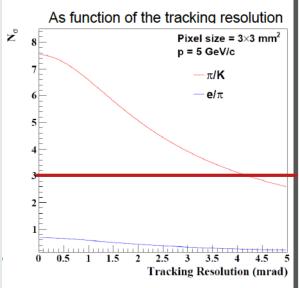


### **mRICH**

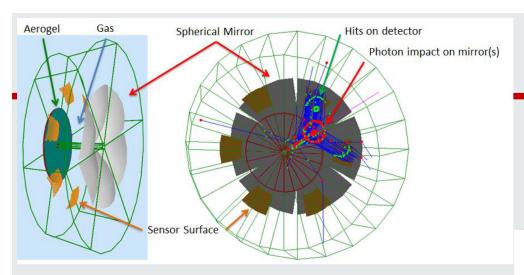
X. He M. Sarsour

- 3 cm aerogel radiator (n=1.03)
- Lens with focal length, f = 6"
- 3mm pixel size photon detector




#### Pro

- Momentum coverage 3-10 GeV/c
- Modular design
- Can provide time measurements with proper sensors?


#### Con

- Photon sensors in high B field
- Sensors and readout electronics in the detector acceptance -> radiation hardness concern
- More quantitative estimate of dead area (foam holder/box/Fresnel corners).

- $e/\pi$  excellent at lowest p
- Can be configured differently for e/π or π /k separation
- Tracking resolution not highly demanding

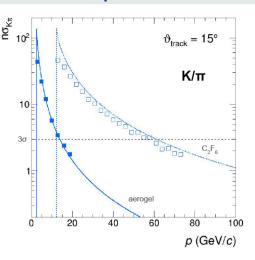


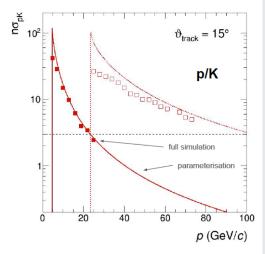




#### Pro

- >  $3\sigma \pi/K$  separation in 3-50 GeV/c
- Photon detector out of acceptance
- Material budget likely smaller than 2 detectors solution


#### Con


- More demanding PID
- R&D on photon sensors needed
- Aerogel chromatic performance critical
- Gas procurement could be an issue
- More quantitative estimate of the material budget

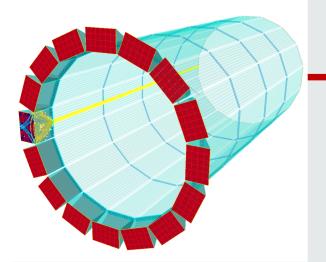
## dRICH

E. CisbaniM. ContalbrigoR. Preghenella

- 4 cm aerogel (n=1.03) + 160 cm C<sub>2</sub>F<sub>6</sub>
- Mirrors
- 3mm pixel size 200-500 nm MAPMT






 $K/\pi$  and p/K separation as a function of momentum

- Exquisite detail in simulation
- Al-based optimization
- Good parametrization

External assumption

- Constant external angular resolution: s=0.5mrad
- Momentum resolution:+/- few %
- Magnetic field : 3 Tesla.

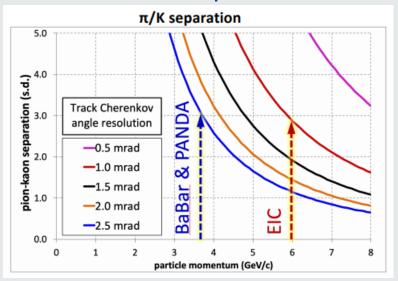


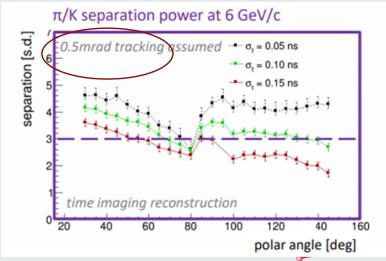


### DIRC

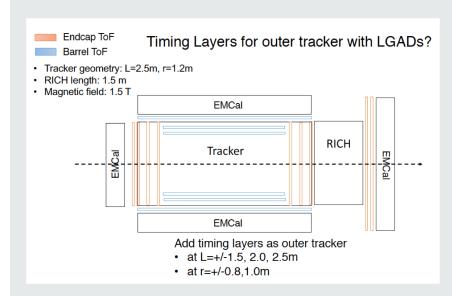
G. Kalicy
J. Schwiening

- 1m barrel radius, 16 sectors
- 176 bars of synthetic fused silica,17mm (T) ´32mm (W) ´4200mm (L)
- Photo sensors: MCP-PMTs -3x3mm2 pixels

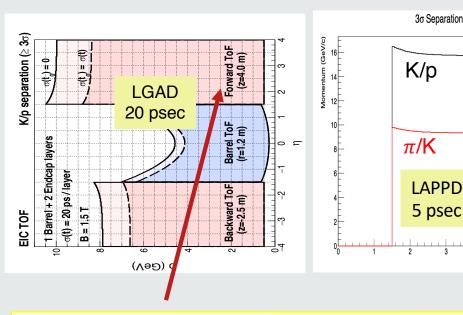

#### Pro


- Excellent performance over wide angular range: >3 $\sigma$   $\pi/k$  up to 6 GeV/c; low mom e/ $\pi$  (3 $\sigma$  @ 1 GeV/c)
- Radially compact
- Supplemental ToF measurement

#### Con

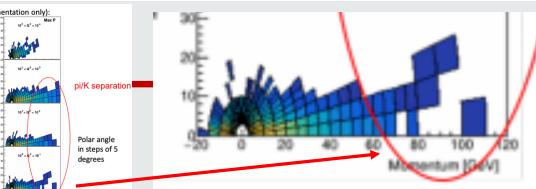

- Potential challenge of integrating expansion volume
- No currently proven sensor solution for 3 T magnetic field

More R&D on sensors






## psTOF




- Multiple technologies (two examples):
  - **LAPPD:** best  $\sigma_t$  B-field  $\sim \bot$ , moderate pixel size
  - **LGAD:** excellent  $\sigma_t$  field tolerant, tiny pixels



- Assumes 4m flight path (conflict?)
- Time resolution very challenging
- Multiple scattering may contribute path length uncertainty (coupling to tracking)
- Requires understanding of t<sub>0</sub> counter

## Conclusions



- PID is challenging!
- Tracking requirement for Cherenkov indicates 0.5 -1.0 mrad level
- Good progress but still some open questions:
  - Simulations are still preliminary except for a few detectors
  - Sensors and electronics in the detector require an evaluation of radiation hardness.
  - R&D on photon sensors is on going (magnetic field tolerance a primary concern: Visible light sensor solution for 3T magnetic field problematic.)
  - No discussion on the material budget
  - Available space is a driving concern for some technologies.
    - Shifting vertex is expensive, but helps most technologies in hadron arm.
    - Need quantitative optimization of cost/benefit
  - Resolution for TOF includes multiple terms in addition to superb  $\sigma_{t}$ 
    - Clock reference/distribution
    - Path length.
- Address  $e-\pi$  separation between now and the next YR meeting
- Work on PID detector envelop

