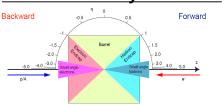
YR DWG Calorimetry: Summary

2nd EIC YR Workshop - Pavia, 2020 May 21 Conveners: Vladimir Berdnikov & Eugene Chudakov


Contribution to the Detector Matrix

- A number of technologies can provide resolutions close to the required by the Matrix
- A tight space allocated would limit the choice of technologies and, in some cases, the performance
- The performance may be affected by the material in front of the calorimeters. The effect is neglected at this stage.

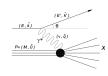
Parallel Sessions

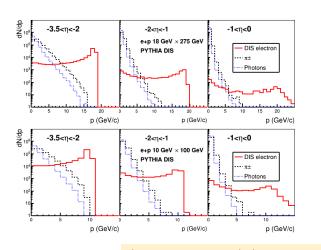
- DWGs Tracking, PID, Calorimetry: Talk by Alexander Bazilevsky dedicated to e/π separation; Useful discussions
- PWGs, DWGs: useful discussions

EIC Calorimetry overview

Detector Matrix for the calorimeters

η	Nomencla ture	EmCal				HCal					
		Energy resoluti on %	Spatial resolution mm	Granul arity cm^2	Min photon energy MeV	PID e/π πsuppre ssion	Technology examples*	Energy resolution %	Spatial resoluti on mm	Granula rity cm^2	Technolog y solution
-3.5 : -2	backward	2/√E ⊕ 1	3/√E ⊕ 1	2x2	50	100	PbWO ₄	50/√E⊕10	50/√E ⊕ 30	10x10	Fe/Sc
-2:-1	backward	7/√E ⊕ 1.5	3(6)/√E ⊕ 1	2.5x2.5 (4x4)	100	100	DSB:Ce glass; Shashlik; Lead glass	50/√E ⊕ 10	50/√E ⊕ 30	10x10	Fe/Sc
-1:1	barrel	(10-12) /√E ⊕ 2	3/√E ⊕ 1	2.5x2.5	100	100	W/ScFi	100/√E ⊕ 10	50/√E ⊕ 30	10x10	Fe/Sc
1:3.5	forward	(10-12) /√E ⊕ 2	3/√E ⊕ 1	2.5x2.5 (4x4)	100	100	W/ScFi Shashlyk, glass	50/√E⊕ 10	50/√E ⊕ 30	10x10	Fe/Sc


^{*}Technology selection depends on the space available Several other technologies are under consideration


e/ π : pion suppression depends on the energy, and the energy and momentum resolutions

Material in front will affect the resolution

Alexander Bazilevsky

Inclusive DIS: background

18x275 GeV

10x100 GeV

Clean measurements at higher momenta Huge background at lower momenta

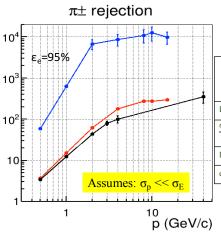
h± response in EMCal

Ideal case:

- No material on the way to EMCal
- Perfect EMCal (no gaps/cracks)
- ➤ Gaussian response to electron

	PbWO ₄	W/SciFi	PbSc
	Crystal (GEANT)	(sPHENIX, GEANT)	(PHENIX, data)
Depth, X ₀	20	~20	18
$\frac{\sigma_E}{E}$	$\frac{2.5\%}{\sqrt{E}} \oplus 1\%$	$\frac{13\%}{\sqrt{E}}$ \oplus 3%	$\frac{8\%}{\sqrt{E}}$ \oplus 2%
Depth, $\lambda_{\rm l}$	0.87	~0.83	0.85
e/h	>2		<1.3

E/p > 1 - 1.6 · $\sigma_{\rm EMC}$ to keep $\varepsilon_{\rm e}$ =95%


E_{CI} (GeV)

 10^{-3}

 10^{-4}

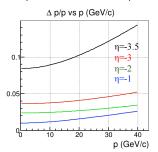
Alexander Bazilevsky

π ± rejection with E/p cut

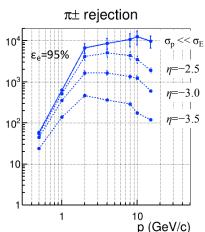
Ideal case:

- No material on the way to EMCal
- Perfect EMCal (no gaps/cracks)
- Gaussian response to electron

	PbWO ₄	W/SciFi	PbSc
	Crystal (GEANT)	(sPHENIX, GEANT)	(PHENIX, data)
Depth, X ₀	20	~20	18
$\frac{\sigma_E}{E}$	$\frac{2.5\%}{\sqrt{E}} \oplus 1\%$	$\frac{13\%}{\sqrt{E}}$ \oplus 3%	$\frac{8\%}{\sqrt{E}}$ \oplus 2%
Depth, $\lambda_{\rm I}$	0.87	~0.83	0.85
e/h	>2		<1.3

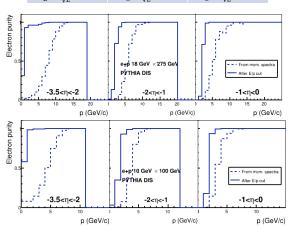

E/p > 1 - 1.6 · σ_{EMC} to keep ε_{e} =95%

Including momentum resolution


PbWO₄ Crystal (GEANT)

$$\frac{\sigma_E}{E} = \frac{2.5\%}{\sqrt{E}} \oplus 1\%$$

BaBar-based Tracking model: TPC (barrel), Si +GEM (forw) (Fun4All-GEANT4 simulation)


E/p > 1 - 1.6 $\cdot \sqrt{\sigma_{EMC}^2 + \sigma_p^2}$ to keep $\varepsilon_{\rm e}$ =95%

Alexander Bazilevsky

DIS scattered electron purity

-3.5<η<-2	-2<η<-1	-1<η<1
$\frac{\sigma_E}{F} = \frac{2.5\%}{\sqrt{E}} \oplus 1\%$	$\frac{\sigma_E}{E} = \frac{7\%}{\sqrt{E}} \oplus 2\%$	$\frac{\sigma_E}{E} = \frac{12\%}{\sqrt{E}} \oplus 2\%$

Ideal case:

- > No material on the way to EMCal
- Perfect EMCal (no gaps/cracks)
- Gaussian response to electron

Purity = e/(e+h)

18 GeV × 275 GeV: Clean eID at >4 GeV/c

10 GeV × 100 GeV: Clean eID at >2-3 GeV/c

Need additional eID capabilities at p<4 GeV/c

Discussion Highlights

- Input for a "parametric simulation" (eicsmear): resolution factors (provided) + formulas for e^-/π^- PID
- Conclusion: additional detectors are needed to improve e^-/π^- separation at p < 5 GeV/c
- Important: simulation with more or less realistic material distribution:
 - Impact on resolutions
 - Impact on e^-/π^- separation
 - Impact on efficiency and resolution in the transition areas $(\eta \approx \pm 1)$
- Impact of the space allocation: more studies needed including an engineer's look
- Hermiticity requirements (HCAL) for jet physics