Update on low- Q^{2} tagger
 Jaroslav Adam

BNL

BNL, May 15, 2020
IR Meeting

Outline

1. Possibility for two low- Q^{2} tagger placements between B2eR and Q3eR - could be both detectors at the same time
2. Comparison of 1.5 T central solenoid to the default 3 T field
3. Change in Q^{2} acceptance for geometry when Q1eR and Q2eR are moved towards the central detector

- Main updates in Geant4 model for the acceptance study:
- Central 3 T solenoid field based on BeAST field map
- Model for backward electromagnetic calorimeter (ECAL)
- Resources used to create the geometry:
- Default IR layout in 200309-er-ip6-95832bb - thanks Scott and Holger for help
- Modified IR with Q1eR in central detector in presentation by Bob Palmer on April 10
- Position of ECAL from drawing in presentation by Mark Breitfeller at Temple meeting
- BeAST solenoid field map from interface by Alexander: https://github.com/eic/BeastMagneticField

IR layout with two taggers and backward ecal

- The ECAL is placed at $z=-3.28 \mathrm{~m}$, inner and outer radii of 8 cm and 2.87 m provide pseudorapidity η in [-4.4, -1], approx. matching the handbook detector
- Inner apertures of the magnets are shown

Tagger detectors alignment

- Taggers 1 and 2 are placed at z of -24 m and -37 m , just outside the drift region D3ER
- The D3ER starts at exit radius of B2eR and ends at entry radius of Q3eR

Geant4 model for electron-outgoing IR

- Drift spaces in grey are transparent to all particles
- Tagger 1,2 and ECAL detectors mark hits by incoming particles
- Solenoid field uses the BeAST parametrization
- Beam magnets are shown in blue
- Components of luminosity monitor are on the opposite side to the taggers
- The layout ends with a marker at Q3eR position

Hit positions on the taggers and ECAL

- Simulation of scattered electrons from 5M Pythia6 events, energy $18 \times 275 \mathrm{GeV}$
- Beam effects of vertex spread and angular divergence in x and y are included
- Positions where the scattered electrons hit the front face of the detectors are shown below

Figure: Hits in tagger 1

Jaroslav Adam (BNL)

Figure: Hits in tagger 2

Figure: Hits in ECAL

IR Meeting, May 15,2020

Shape of Q^{2} with the two tagger detectors

- Simulation of 5 M scattered electrons from Pythia6, $18 \times 275 \mathrm{GeV}$
- Virtuality Q^{2} is given by electron energy and scattering angle:

$$
Q^{2}=2 E E^{\prime}\left(1-\cos \left(\theta_{e}\right)\right)
$$

- Shape in black shows distribution of Q^{2} from all generated events
- Q^{2} of events with hit in one of the taggers is shown in green and yellow

Complementary kinematics for the two taggers

- Scattered electron energy and angle for events with a hit in one of the taggers

Figure: Tagger 1

Figure: Tagger 2

- Although both taggers largely overlap in Q^{2}, they cover different energy and angular range
- Tagger 1, closer to the IP, is sensitive only to energies below $\sim 12 \mathrm{GeV}$
- Both detectors would be affected by bremsstrahlung (and other) background in a different way

Acceptance in Q^{2} with both taggers

- Acceptance is a ratio of number of events with hit in the tagger to all generated events, in a given interval of Q^{2}
- Shown separately for both taggers and as a combined acceptance
- Combined acceptance (black) counts hit in any of the two taggers for the ratio

Region of Q^{2} covered by backward ECAL

Figure: Q^{2} with ECAL added

Figure: Energy and angles for ECAL

- The ECAL adds acceptance above the taggers
- Region of Q^{2} from 10 to $10^{-2} \mathrm{GeV}^{2}$ is interesting for physics because it is transition from electroproduction (photon still virtual) to photoproduction (photon acts like real)
- The acceptance is driven by geometry (only solenoid field)
- For a large interval in Q^{2} it is unity

Combined Q^{2} acceptance with taggers and ECAL

- The acceptance is constructed the same way as for the taggers alone
- Black shape is combined acceptance for the hit in any of the taggers or ECAL
- Drop in acceptance is present between the taggers and ECAL, but does not fall to zero

Comparison of ECAL Q^{2} coverage with reduced central solenoid field

- Q^{2} for events with a hit in ECAL
- Default 3 T BeAST solenoid (blue) was replaced by a uniform 1.5 T field (red)
- Slight increase at lower Q^{2} reach, but no big change

Acceptance with reduced central solenoid field

- Closer look to acceptance across the drop between taggers and ECAL
- Default 3 T BeAST solenoid (blue) was replaced by a uniform 1.5 T field (red)
- No substantial change
- Difference is visible thanks to vertical log scale and higher precision in acceptance calculation (1.5% vs. previous 2%)

IR layout with Q1eR inside the central detector

- ECAL inner radius was moved up from 8 cm to 10 cm - very optimistic assumption, pseudorapidity coverage decreased to η in $[-4.18,-1]$

Geant4 model for the layout with Q1eR inside the central detector

- ECAL has opening for Q1eR, optimistic assumption of 10 cm
- The layout after B2eR remains the same
- Simulation of the same 5M Pythia6 events was repeated for this geometry

Change in Q^{2} region covered by ECAL with Q1eR in central detector

- Q^{2} for events with a hit in ECAL for both geometries
- Larger inner radius is reducing the acceptance at small angles
- Has a consequence in increase in lower limit of Q^{2}

Change in acceptance gap between the taggers and ECAL

- Detailed look into transition region between the taggers and ECAL for the acceptance shown on page 11
- Shown the case of combined acceptance, hit in any of the taggers or ECAL counts for the acceptance
- Previous result with default geometry is shown in blue, modification with ECAL larger inner radius is shown in red
- The gap gets wider with a more flat bottom when inner ECAL radius gets increased
- Change in acceptance from taggers at lower Q^{2} is caused by different Q1eR and Q2eR arrangement

Summary

- Region in Q^{2} from 10^{-2} to $10 \mathrm{GeV}^{2}$ is sensitive to physics as it is transition between photoproduction and electroproduction
- Q^{2} coverage depends on available inner radius for ECAL — please let me know as 10 cm optimistic radius was used now
- Small change in Q^{2} acceptance with reduced central solenoid field
- There is a variation in quadrupoles behavior across Geant4 versions - would be good to know beam size at Q3eR to compare
- Summary on detectors placement, frame with Q1eR to B2eR collinear with electron beam and placed at $x=0$:

Tagger 1	Tagger 2	ECAL
$z_{\text {start }}=-24 \mathrm{~m}$	$z_{\text {start }}=-37 \mathrm{~m}$	$z_{\text {start }}=-3.28 \mathrm{~m}$
$x_{\text {center }}=52.856 \mathrm{~cm}$	$x_{\text {center }}=66.188 \mathrm{~cm}$	$r_{\text {inner }}=8 \mathrm{~cm}$
(default), 10 cm (Q1eR in)		
Front size $=40 \times 40 \mathrm{~cm}^{2}$	Front size $=30 \times 20 \mathrm{~cm}^{2}$	$r_{\text {outer }}=2.87 \mathrm{~m}$
Angle $=18.332 \mathrm{mrad}$	Angle $=18.332 \mathrm{mrad}$	
An		

- All Geant4 and analysis codes are here: github.com/adamjaro/lmon

