

Far-Forward Region Layout

Using EICRoot with GEANT4

Off-Momentum Detectors

Hadron beam coming from IP

BO Silicon
Detector

$$
x_{L}=\frac{p_{z, \text { nucleon }}}{p_{z, \text { beam }}}
$$

What has been studied?

- DVCS proton measurements (using MILOU).
- Acceptances of protons in Roman Pots and BO.
- Pt resolution and measurement of t-distribution.
- All effects included (e.g. angular divergence, detector reconstruction, etc.).
- Three energies ($5 \times 41 \mathrm{GeV}, 10 \times 100 \mathrm{GeV}, 18 \times 275 \mathrm{GeV}$).
- Spectator tagging of e+D nuclear breakup with BeAGLE (paper soon to be on arXiv).
- Acceptance and resolutions for all 4 detectors.
- All effects included.
- Two energies ($18 \times 110 \mathrm{GeV}, 18 \times 135 \mathrm{GeV}$).

Review of DVCS results

x_y_image_RP

attering angle [mrad]
인 니 는
15 GeV on 50 GeV

15 GeV on 100 GeV

$10 \times 100 \mathrm{GeV}$

$5 \times 41 \mathrm{GeV}$

Results from $e+D$ nuclear breakup

MC_proton_p
MC_proton_P

MC_neutron_mom

MC_Proton_Phi

MC_Neutron_Phi

MC_Proton_Theta

MC_Neutron_Theta

Particular process in BeAGLE: incoherent diffractive J/psi production off bounded nucleons.

Results from e+D nuclear breakup
 x_y_image_RP_Ext
 x_y_image_B0
 zdcMap

MC_proton_p

MC_neutron_mom

MC_Proton_Phi

MC_Neutron_Phi

MC_Proton_Theta

MC_Neutron_Theta

Particular process in BeAGLE: incoherent diffractive J/psi production off bounded nucleons.

Proton spectator case.

