

Heavy hadron spectroscopy at Electron-Ion Colliders

Feng-Kun Guo Institute of Theoretical Physics, CAS

EIC Semi-inclusive User Group Meeting

06 April 2020

Low-energy QCD: big challenge

New era of hadron spectroscopy since 2003: Charmed mesons

Mass discrepancies

Hidden-charm XYZ states

Some states are very close to two-body S-wave thresholds

Bottomonium spectrum: much less states observed

Pentaquark candidates: P_c

• observed in $J/\psi p$ invariant mass distribution: pentaquark ($c\bar{c}uud$) candidates

Pentaquark candidates: P_c in 2019

LHCb, PRL122(2019)222001

No evidence of Pc at GlueX in $\gamma p \rightarrow J/\psi p$ PRL123(2019)072001 Limits on the branching fraction: B($P_c \rightarrow J/\psi p$) ~ (0.05-0.5)% X. Cao, J.-P. Dai, PRD100(2019)054033

• In addition to the final states with J/ψ , it's important to search for hidden-charm XYZ states and pentaquarks through open-charm final states

- Photoproduction: $\sigma(\gamma p \to J/\psi p) \sim O(10 100 \text{ nb})$, (no resonant enhancement considered), $\sigma(\gamma p \to c\bar{c}X) \sim (20 50) \times \sigma(\gamma p \to J/\psi p)$
- Electroproduction: cross sections are roughly two orders of magnitude (α) smaller
- For an integrated luminosity of 50 fb⁻¹, no. of J/ψ is ~ $O(10^7 10^8)$; many more opencharm hadrons D and Λ_c ⁸

- $B(P_c \to \Lambda_c \overline{D}^{(*)})$ is expected to be one order of magnitude larger than $B(P_c \to J/\psi p)$ See, e.g., Y.-H. Lin et al., PRD95(2017)114017
- In hadronic molecular model, P_c states couple dominantly to $\Sigma_c^{(*)}\overline{D}^{(*)}$.

J.-J. Wu, B.-S. Zou, E. Oset, J. Nieves, M. Pavon Valderrama, L.-S. Geng, M. Karliner, FKG, ...

 X(3872) couples dominantly to DD
 ^{*} (>30%); similarly for Zc(3900) BESIII

PDG2019

• Production of P_c in semi-inclusive reactions:

Event generators

The method has been used to estimate the X(3872) production at hadron colliders

Artoisenet, Braaten, PRD83(2011)014019; FKG, Meißner, W. Wang, Z. Yang, EPJC74(2014)3063

$\sigma(pp/\bar{p}\rightarrow X)$	[nb]Exp.	$\Lambda = 0.5 \text{ GeV}$	$\Lambda = 1.0 \text{ GeV}$
Tevatron	37-115	7(5)	29(20)
LHC-7	13 - 39	13(4)	55 (15)

Albaladejo, FKG, Hanhart et al., CPC41(2017)121001

• There are seven P_c states in hadronic molecular model with heavy quark spin symmetry:

Xiao, Nieves, Oset, 1304.5368; Liu et al., 1903.11560; Sakai et al., 1907.03414; ...

Scheme II	J^P	Pole [MeV]	DC (threshold [MeV])	$g_{ m eff}$
$P_c(4312)$	$\frac{1}{2}^{-}$	4314(2) - 5(2)i	$\Sigma_c \bar{D}(4321.6)$	2.86(12) - 0.44(24)i
$P_{c}(4380)$	$\frac{3}{2}$	4378(2) - 13(3)i	$\Sigma_{c}^{*}\bar{D}$ (4386.2)	3.00(12) - 0.49(27)i
$P_{c}(4440)$	$\frac{3}{2}$	4441(2) - 11(3)i	$\Sigma_c \bar{D}^*$ (4462.1)	3.91(11) - 0.62(19)i
$P_{c}(4457)$	$\frac{1}{2}$	4459(2) - 4(1)i	$\Sigma_c \bar{D}^*$ (4462.1)	2.09(17) - 0.46(18)i
P_{c}	$\frac{1}{2}$	4524(2) - 9(1)i	$\Sigma_{c}^{*}\bar{D}^{*}$ (4526.7)	1.90(23) - 0.28(21)i
P_{c}	$\frac{3}{2}$	4518(2) - 11(2)i	$\Sigma_{c}^{*}\bar{D}^{*}$ (4526.7)	2.83(16) - 0.43(18)i
P_c	$\frac{5}{2}$	4498(5) - 35(17)i	$\Sigma_{c}^{*}\bar{D}^{*}$ (4526.7)	4.66(55) - 1.12(32)i

• production of the X(3872)

 $\sigma(e^-p \rightarrow X(3872) + \text{anything}) B(X \rightarrow J/\psi \pi^+\pi^-)$ at $Q^2 > 1 \text{ GeV}^2$ estimated using

NRQCD with input from hadron colliders (courtesy of Xiaojun Yao)

CM energy	10 GeV	15 GeV	20 GeV	100 GeV
Cross section	0.04 pb	0.13 pb	0.26 pb	2.6 pb

Considering an integrated luminosity of 50 fb⁻¹, no. of X(3872) is ~ $O(10^3 - 10^5)$

Exclusive production of P_b

X. Cao, FKG, Y.T. Liang et al., 1912.12054

Nonresonant: fitted using the soft dipole Pomeron model Martynov, Predazzi, Prokudin, EPJC26(2002)271, PRD67(2003)074023

Assuming $B(P_b \rightarrow \Upsilon p) = 5\%$ ((0.5 - 5)% for the band inserted plot)

• Photoproduction: $\sigma(\gamma p \to \Upsilon p) \sim O(10^{-2} \cdot 10^{-1} \text{nb}), \ \sigma(\gamma p \to b \overline{b} X)$ is about two orders higher; possibility of detecting the open-bottom hadrons *B* and Λ_b ?

Summary

- EIC and EicC will also contribute a lot to hadron spectroscopy
- Consider open-flavor final states (challenge: detection efficiency?)
- Supplementary to existing experiments Different production mechanisms: free of triangle singularities in B and Λ_b decays

Complementary to

Thank you for your attention!

EicC: Electron-ion collider in China

- CM energy: 15-20 GeV
- Luminosity: (2-4) * 10³³ cm⁻²s⁻¹
- Polarized beams

XYZ	产生过程	衰变道
X(3872)	$B \to KX/K\pi X, e^+e^- \to \gamma X,$ $pp/p\bar{p}$ 单举	$\pi^+\pi^- J/\psi, \omega J/\psi, D^{*0}\bar{D}^0, \gamma J/\psi, \gamma \psi(2S)$
X(3915)	$B \to KX, \gamma \gamma \to X$	$\omega J/\psi$
X(4140)	$B \rightarrow KX, p\bar{p}$ 单举	
X(4274)		$\phi I h \mu$
X(4500)	$B \to KX$	$\psi J / \psi$
X(4700)		
X(3940)	$a^+a^- \rightarrow I/h + Y$	$Dar{D}^*$
X(4160)	$e e \rightarrow J/\psi + X$	$D^*ar{D}^*$
X(4350)	$\gamma\gamma \to X$	$\phi J/\psi$
Y(4008)	$e^+e^- \rightarrow Y$	$\pi\pi J/\psi$
Y(4260)	$e^+e^- \rightarrow Y$	$\pi\pi J/\psi, Dar{D}^*\pi, \chi_{c0}\omega, h_c\pi\pi$
Y(4360)	$a^+a^- \rightarrow V$	$\pi\pi\psi(2S)$
Y(4660)	$e e \rightarrow I$	$\pi\pi\psi(2S), \Lambda_c\bar{\Lambda}_c$
$Z_c(3900)$	$e^+e^- \rightarrow \pi Z_c, b$ 强子单举衰变	$\pi J/\psi, Dar{D}^*$
$Z_c(4020)$	$e^+e^- \rightarrow \pi Z_c$	$\pi h_c, D^* ar D^*$
$Z_1(4050)$	$R \rightarrow KZ$	π^{\pm} V i
$Z_2(4250)$	$D \rightarrow K L_{C}$	$n \chi_{c1}$
$Z_c(4200)$	$R \rightarrow KZ$	$\pi^{\pm}J/\psi$
$Z_c(4430)$	$D \rightarrow K L_C$	$\pi^{\pm}J/\psi, \pi^{\pm}\psi(2S)$

• In weak decays $b \rightarrow [c\bar{c}]s$

Three/four-body hadronic decays: $B \rightarrow K X$, $\Lambda_b \rightarrow K P_c$

Process	Production	Decay	Particle
		$\begin{array}{l} X \to \pi^+ \pi^- J/\psi \ [4,110-115] \\ X \to D^{*0} \bar{D}^0 \ [116-118] \\ X \to \gamma J/\psi \ [119-122] \\ X \to \gamma \psi (2S) \ [119,121] \end{array}$	X(3872)
	$B \to K + X$	$X \rightarrow \omega J/\psi \ [107,123,124]$	X(3872) Y(3940)
		$X \rightarrow \gamma \chi_{c1}$ [125]	X(3823)
Β and Λ _b decays		$X \rightarrow \phi J/\psi$ [126–133]	Y(4140) Y(4274) X(4500) X(4700)
		$Z \to \pi^{\pm} \chi_{c1}$ [134,135]	$Z_1(4050)$ $Z_2(4250)$
	$B \rightarrow K + Z$	$Z ightarrow \pi^{\pm} J/\psi$ [46,136]	$Z_c(4200)$ $Z_c(4430)$
		$Z \to \pi^{\pm} \psi(2S) [30, 136-140]$	$Z_c(4240)$ $Z_c(4430)$
	$B \to K\pi + X$	$X \rightarrow \pi^+ \pi^- J/\psi$ [141]	X(3872)
	$\Lambda_b \to K + P_c$	$P_c \rightarrow pJ/\psi$ [35]	$P_c(4380)$ $P_c(4450)$

Lebed, Mitchell, Swanson, PPNP93(2017)143

b

Masses limited to

 $M_B - M_K \approx 4.8 \text{ GeV}$ $M_{\Lambda_b} - M_K \approx 5.1 \text{ GeV}$

Masses of initial states fixed

- Difficulties for multi-hadron final states
 - ✓ Many resonances from the cross channel:

branching fractions often unknown, interference between overlapping resonances, multi-channel unitarity, ...

✓ 3-body FSI is even more complicated:

intermediate states can be different from external ones; threshold cusps; triangle singularities or more complicated Landau singularities

 We need combined th.+exp. efforts: other production processes; better knowledge of light-flavor resonances; amplitude analysis framework considering the above subtleties

- In e^+e^- collisions,
 - \succ Energy coverage limited: $\lesssim 4.6 \text{ GeV}$ @BESIII, thus
 - ✓ Vector heavy quarkonia; little is known above that energy (BESIII is taking data);
 - ✓ for other quantum numbers, even lower mass accessible: $e^+e^- \rightarrow X + \gamma$ /pions; resonances decaying into $\psi \phi$, $\psi \omega$ cannot be studied
 - ✓ No access to charm-anticharm baryon-pair thresholds, e.g., $\Lambda_c^+ \Lambda_c^-$; no access to thresholds of a pair of excited charm mesons, e.g., $D_1 \overline{D}_1$

 \succ e⁺e⁻ → γ_{ISR}Y and two-photon processes: much lower rates