EIC SIDIS simulation study at Duke

EIC Yellow Report SIDIS working group meeting Duke University Xiaqing Li April 6 2020

SIDIS @ EIC requirements

- A variable low to moderately high center of mass energy (E_{cm})
 - Kinematic coverage: from JLab 12 GeV (also HERMES & COMPASS) valence quark region to EIC sea quark/gluon region
- High luminosity
 - Extractions of TMDs rely on high-precision multidimensional bins
 - Factorization, transition from low-Pt to high-Pt
 - Q² evolution
 - Model dependence
 - ...
 - High statistics allow to reduce certain systematic uncertainties (radiative corrections, model dependence, etc.)
- Simulations conducted with various E_{cm} values and high luminosity

Overview of the simulation parameters

- SIDIS event generator: updated version of the SoLID SIDIS generator
- Integrated luminosity: $1 \times 10^{41} cm^{-2} (100 fb^{-1})$
- Cuts applied:
 - 0.05 < y < 0.8
 - W > 2.3 GeV
 - M_x > 1.6 GeV
 - 0.7 GeV < P_h < 10 GeV
 - P_e > 0.7 GeV
 - $2.5^{\circ} < \theta_{e} < 150^{\circ}$
- Polarization of proton beam = 80%
- Combined detection efficiency = 50%

3

4

Comparison of different ($E_e + E_p$) configurations for $E_{cm} = 51 \text{ GeV}$

7

Comparison of different ($E_e + E_p$) configurations for $E_{cm} = 75$ GeV

Takeaway: the low E_{cm} curve for luminosity is highly favored for the EIC SIDIS study

Figure from F. Willeke's slides at EICUG Temple Meeting, Mar 18, 2020