Exploration of the properties of the medium produced in large and small collision-systems with azimuthal anisotropy scaling functions

Roy A. Lacey

<u>Outline</u>

- > Introduction
 - ✓ Large to small collision systems
 - ✓ The role of fluctuations in small collision-systems

STAR Measurements (p/d/³He+Au)

- ✓ Data & analysis
- ✓ Non-flow mitigation and v_n extraction

p/d/³He+Au results

- $\checkmark V_2 \& V_3$
- ✓ Comparison to other measurements
- Implications [medium explorations]
 - ✓ Anisotropy scaling functions
 - ✓ What/how we learn from them
 - Epilogue

respective role of shape (ε_n), size (RT), $\frac{\eta}{c}$, \hat{q} , etc.

✓ Scaling coefficients provide constraints for $\frac{\eta}{c}$ (T, $\mu_{\rm B}$) and \hat{q}

Backdrop – Small collision systems

Hydrodynamic expansion-dynamics prevail for sizes as small as RT ~ 1?

Controlling influence similar to that for A+A collisions – with different coefficients?

$$v_n = \mathcal{E}_n e^{-n \left[n \left(\frac{4}{3} \frac{\eta}{s} + \frac{\xi}{s} \right) + \kappa p_T^2 \right] \frac{1}{RT}}, RT \propto \left\langle N_{chg} \right\rangle^{1/3}$$

Radiative E-loss $R_{AA}(p_T, L) \simeq \exp\left[-\frac{2\alpha_s C_F}{\sqrt{\pi}} L \sqrt{\hat{q} \frac{\mathcal{L}}{p_T}}\right]$

 $\mathcal{L} \equiv \frac{d}{d\ln p_T} \ln \left[\frac{d\sigma_{pp}}{dp_T^2} (p_T) \right]$

 \geq

> The CGC-EFT mechanism prevails ✓ Initial-state momentum-driven

Eikonal-like scattering of quarks off of a gluon dense nuclear target

Characteristically different controlling influence from $Q_{s,T} \ll p_T^{\max}, Q_{s,p}(B_p)$

 $v_{2n}{2} \propto N_{chg}^{0}, v_{2n+1}{2} \propto N_{chg}^{1/2}, \delta(v_n), C_r(n,m)$

STAR measurements can aid quantification of the influence of the respective control variables to:

- ✓ discern between these final- and initial-state models
- ✓ give insight and constraints for the properties of the matter produced in these collisions

Backdrop – Shape engineering and sub–nucleonic fluctuations

> Shape engineering <u>NOT</u> viable

in ALL current measurements

 $\checkmark \epsilon_2$ and ϵ_3 approx. system-independent

due to sub-nucleonic fluctuations

 Creation of quark–gluon plasma droplets with three distinct geometries:
 PHENIX, <u>Nature Physics</u> 15, 214-220 (2019)

- Nucleonic substructure plays an important role
 - Model comparisons without fluctuation constraints are meaningless for "small systems"
- New measurements (especially v₃) can provide additional constraints to address "shape engineering" in small systems

Backdrop – Shape engineering and sub–nucleonic fluctuations

0.28

0.32

Initial eccentricities

ε₃ d+Au

 ε_3 ³He+Au

0.18

0.28

• Nagle et al: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.113.112301

0.31

0.35

STAR QM19: https://indico.cern.ch/event/792436/contributions/3535629/

R. Belmont, UNCG WWND 2020, 2 March 2020 - Slide 29

 \succ New measurements (especially v_3) can provide additional

0.38

0.43

constraints to address "shape engineering" in small systems

> Shape engineering <u>NOT</u> viable

in ALL current measurements

 \checkmark ϵ_2 and ϵ_3 approx. system-independent

due to sub-nucleonic fluctuations

nitial energy density

s an

Ut

'stems"

3

Data Analyses

STAR Experiment at RHIC

The STAR detector is used for the current measurements

Measurements for p/d/³He+Au collisions @ 200 GeV

Centrality:

i) Number of tracks in 0.2–3.0 GeV/*c*, $|\eta| < 0.9$ ii) BBC charge in Au-going direction $-5.0 < \eta < -3.3$

Multiplicity:

Number of tracks for 0.2 $< p_T < 3.0 \text{ GeV}/c$, $|\eta| < 0.9$

- ✓ efficiency corrected
- > Two-particle correlation functions constructed for trigger and associated particles with 0.2 $< p_T < 2.0 \text{ GeV}/c$ $|\eta| < 0.9 \text{ and } |\Delta \eta| > 1.0$
 - ✓ Differential v₂{2}(p_T), v₃{2}(p_T) and integral v₂{2}, v₂{4}, v₃{2} (for 0.2 < p_T < 3.0 GeV/*c*, $| \eta | < 0.9$) extracted from correlation functions following non-flow subtraction

Long-range two-particle correlators and v_n extraction (I)

The well-known techniques of leveraging the two-particle p+p correlator to mitigate non-flow, are employed \rightarrow **Three methods!**

 $\frac{1}{N_{trig}} dN/d\Delta\phi = c_0(1 + 2 * \sum_{n=1}^{4} c_n \cos(n\phi))$

<br/

- Characteristic ridge apparent for p/d/³He+Au; little, if any, for min. bias p+p
 - Suggests the leveraging of the p+p correlator for non-flow mitigation
 - Methodologies validated with closure test
 Results are method-independent within uncertainties

Long–range two–particle correlators and v_n extraction (II)

3. Template Fit (ATLAS, PRL 116, 172301 (2016)) $Y_{templ.}(\Delta \phi) = F \times Y_{pp.}(\Delta \phi) + Y_{ridge}(\Delta \phi)$ $Y_{ridge}(\Delta \phi) = G \times (1 + 2 \times \sum_{n=2}^{4} c_n^{sub} \times \cos(n\Delta \phi))$

"F" represents the jet modification for the long-range away-side jet between p/d/³He+Au and p+p Method validated with closure test
 Results are method-independent within uncertainties

STAR differential v_n measurements for p/d/³He+Au

Non-flow mitigation is important and is system dependent
 The v_{2,3} results are method-independent within uncertainties
 Note that the un-subtracted v₃ is a lower limit

Differential v_{2,3} measurements for different centrality definitions

STAR integral v_2 measurements for $p/d/^3$ He +Au

System-independent values of v₂{2} for similar multiplicity, regardless of method
 V₂{4} N_{ch}-independent over the range of the measurements

 $\checkmark \frac{v_2\{4\}}{v_2\{2\}}$ consistent with expectation for eccentricity fluctuations, within uncertainties

✓ Results incompatible with CGC-EFT over the full range of the measurements v_{2n} {2} ∝ N_{chg}^{0} M. Mace et al., *PLB* 788, 161-165

STAR integral v₃ *measurements for p/d/*³He+Au

V₃{2} is method-independent within the uncertainty of the measurements
 Significantly weaker multiplicity dependence for v₃ than for v₂

✓ Results incompatible with CGC-EFT

 $v_{2n+1}^{}\{2\} \propto N_{chg}^{1/2}$

M. Mace et al., PLB 788, 161-165

 \checkmark Magnitudes of v₃ differ from those of prior measurements

Data Comparisons

Reasonable agreement between the current and earlier results

STAR QM18 obtained via peripheral subtraction

✓ Possibly an underestimate

✓ STAR QM19 obtained via p+p subtraction

Data Comparisons – v₂

The STAR and PHENIX measurements for v₂{2} are in reasonable agreement for all systems
 Some difference for pT>1 GeV/c [d+Au] and pT<1 GeV/c [p+Au]

> System-dependent trends consistent with "shape-size" dependencies

Data Comparisons – V₃

The STAR and PHENIX v₃{2} measurements for p/d+Au differ by more than a factor of 3-4

✓ System independent STAR v₃

✓ System dependent PHENIX v₃

PHENIX: PRC95, 034910, Nature Physics 15, 214–220

PHENIX EP	³ He+Au	d+Au	p+Au
(ψ_2^{BBCS})	0.110	0.1073	0.062
(ψ_3^{BBCS})	0.034	0.057	0.067

✓ Note that EP resolution is proportional to v_n and $\sqrt{N_{ch}}$

 v_2 and v_3 for p+Au and d+Au differ by more than a factor of 7, while the respective event-plane resolutions are nearly identical

The STAR measurements are consistent with the important role of

"size" (N_{ch}) in addition to the fluctuations-driven eccentricity ($\epsilon_{2,3}$)

 This observation is also consistent with recent hydrodynamic calculations which incorporates sub-nucleonic fluctuations

- fluctuations
 - Fluctuation measurements for O+O could provide additional model constraints
- Future precision measurements of fluctuations and v_n correlations for small systems @ RHIC, are crucial
 - ✓ Initial-eccentricity constraint

Roy A. Lacey, BNL Seminar, April 14, 2020

Implications for the properties of the medium produced in small systems

- Questions of interest
 - ✓ Are the medium properties for small and large systems different?
 - ✓ Jet quenching in small systems?
- Anisotropy scaling functions can give detailed insight
 - They leverage the specific dependencies of viscous attenuation and jet quenching on the control variables

- Data should collapse on to a single curve for fully constrained scaling coefficients
 - Scaling coefficients give access to transport coefficients
 - $\frac{\eta}{s}(\mathbf{T}, \mu_{\mathbf{B}}), \, \widehat{\boldsymbol{q}}, \, \boldsymbol{etc.}$

 Characteristic patterns of viscous damping validated for viscous hydrodynamics!

✓ Calibration of scaling coefficients since $\frac{\eta}{s}$ is known.

 Characteristic patterns of viscous damping and jet quenching validated for the same parameters

✓ Scaling coefficients provide constraints for $\frac{\eta}{s}$ (T, $\mu_{\rm B}$) and \hat{q}

✓ Characteristic patterns of viscous damping and jet quenching validated ✓ Scaling coefficients provide constraints for $\frac{\eta}{c}$ (T, $\mu_{\rm B}$) and \hat{q}

 Characteristic patterns of viscous damping and jet quenching validated for the same parameters

✓ Scaling coefficients provide constraints for $\frac{\eta}{s}$ (T, μ_B) and \hat{q}

 Characteristic patterns of viscous damping and jet quenching validated for the same scaling coefficient.

✓ Scaling coefficients provide constraints for $\frac{\eta}{s}$ (T, $\mu_{\rm B}$) and \hat{q}

- Indications for viscous damping and jet quenching across systems.
 - ✓ Viscous damping very important for small dimensionless sizes.
 - ✓ Scaling coefficients indicate;
 - \checkmark an increase in η /s from RHIC to LHC.
 - ✓ A "small" increase in η /s from large to small systems.

- Characteristic patterns of viscous damping and jet quenching validated for different particle species.
 - ✓ Scaling coefficients provide constraints for $\frac{\eta}{s}$ (T, μ_B) and \hat{q}

Extracting transport coefficients

K. Dusling et. al. Phys.Rev.C81:034907,2010

- The off equilibrium correction is controlled by two nonperturbative parameters
 - $\sqrt{\frac{\eta}{s}}$ at low momentum
 - $\checkmark \hat{q}$ at high momentum

The smooth merger of the low and high pT regions is a crucial constraint

Roy A. Lacey, BNL Seminar, April 14, 2020

Epilogue

- New STAR differential and integral v_n measurements that explicitly account for the effects of non-flow, are presented for p/d/³He+Au
 - Non-flow mitigated by leveraging two-particle p+p correlation function via several methods.
 - ✓ The measurements are method-independent within uncertainties
 - ***** For similar multiplicity
 - ✓ The observed v_2 and v_3 are consistent with the important role of both "size" (N_{ch}) and the fluctuations-driven eccentricity (ϵ_n)
 - ✓ The measurements [especially v₃] are inconsistent with the notion of shape engineering in p/d/³He+Au collisions
 - Anisotropy scaling functions allow seamless leveraging of the diverse measurements to constrain models & transport coefficients
 - Initial indications for change in transport coefficients with beam energy, small collision-system sizes, conserved currents, etc.
 - Future anisotropy measurements for symmetric small systems, as well as high p_T data are crucial for improved constraints and insights
 - ✓ STAR is well positioned for such measurements post BES-II

End