

Probing the strong interaction with DIS event shapes

Christopher Lee, LANL

In collaboration with Daekyoung Kang & Iain Stewart

EIC Jets & HQ Working Group Meeting April 6, 2020

Jets in DIS and the strong coupling

Process	Collab.	Value	Exp.	Th.	Total	(%)
(1) Inc. jets at low Q^2	H1	0.1180	0.0018	+0.0124 -0.0093	+0.0125 -0.0095	$^{+10.6}_{-8.1}$
(2) Dijets at low Q^2	H1	0.1155	0.0018	$+0.0124 \\ -0.0093$	+0.0125 -0.0095	$^{+10.8}_{-8.2}$
(3) Trijets at low Q^2	H1	0.1170	0.0017	+0.0091 -0.0073	+0.0093 -0.0075	$^{+7.9}_{-6.4}$
(4) Combined low Q^2	H1	0.1160	0.0014	+0.0094 -0.0079	+0.0095 -0.0080	$^{+8.2}_{-6.9}$
(5) Trijet/dijet at low Q^2	H1	0.1215	0.0032	+0.0067 -0.0059	+0.0074 -0.0067	$^{+6.1}_{-5.5}$
(6) Inc. jets at medium Q^2	H1	0.1195	0.0010	+0.0052 -0.0040	+0.0053 -0.0041	$^{+4.4}_{-3.4}$
(7) Dijets at medium Q^2	H1	0.1155	0.0009	$+0.0045 \\ -0.0035$	+0.0046 -0.0036	$^{+4.0}_{-3.1}$
(8) Trijets at medium Q^2	H1	0.1172	0.0013	+0.0053 -0.0032	+0.0055 -0.0035	$^{+4.7}_{-3.0}$
(9) Combined medium Q^2	H1	0.1168	0.0007	+0.0049 -0.0034	+0.0049 -0.0035	$^{+4.2}_{-3.0}$
(10) Inc. jets at high Q^2 (anti- k_T)	ZEUS	0.1188	+0.0036 -0.0035	+0.0022 -0.0022	$+0.0042 \\ -0.0041$	$^{+3.5}_{-3.5}$
(11) Inc. jets at high Q^2 (SIScone)	ZEUS	0.1186	+0.0036 -0.0035	+0.0025 -0.0025	+0.0044 -0.0043	$^{+3.7}_{-3.6}$
(12) Inc. jets at high Q^2 (k_T ; HERA I)	ZEUS	0.1207	+0.0038 -0.0036	+0.0022 -0.0023	+0.0044 -0.0043	$^{+3.6}_{-3.6}$
(13) Inc. jets at high Q^2 (k_T ; HERA II)	ZEUS	0.1208	+0.0037 -0.0032	$+0.0022 \\ -0.0022$	+0.0043 -0.0039	$^{+3.6}_{-3.2}$
(14) Inc. jets in γp (anti- k_T)	ZEUS	0.1200	+0.0024 -0.0023	+0.0043 -0.0032	+0.0049 -0.0039	$^{+4.1}_{-3.3}$
(15) Inc. jets in γp (SIScone)	ZEUS	0.1199	+0.0022 -0.0022	+0.0047 -0.0042	+0.0052 -0.0047	$^{+4.3}_{-3.9}$
(16) Inc. jets in γp (k_T)	ZEUS	0.1208	$+0.0024 \\ -0.0023$	+0.0044 -0.0033	+0.0050 -0.0040	$^{+4.1}_{-3.3}$
(17) Jet shape	ZEUS	0.1176	+0.0013 -0.0028	+0.0091 -0.0072	+0.0092 -0.0077	$^{+7.8}_{-6.5}$
(18) Subjet multiplicity	ZEUS	0.1187	$+0.0029 \\ -0.0019$	+0.0093 -0.0076	+0.0097 -0.0078	$^{+8.2}_{-6.6}$
HERA average 2004		0.1186	± 0.0011	± 0.0050	± 0.0051	± 4.3
HERA average 2007		0.1198	± 0.0019	± 0.0026	± 0.0032	± 2.7

Table 1: Values of $\alpha_s(M_Z)$ extracted from jet observables at HERA together with their uncertainties (rows 1 to 18). The 2004 [10] and 2007 [11] HERA averages are shown in the last two rows.

Extractions from exclusive jet cross sections have order 10% uncertainty, dominated by theory

> Improve to level of e⁺e⁻?

C. Glasman, in the Proceedings of the Workshop on Precision Measurements of α_s [1110.0016]

•A global event shape measuring degree to which final state is N-jet-like.

D. Kang, CL, I. Stewart (2013)

also Z. Kang, Liu, Mantry, Qiu (2012, 2013)

$$\tau_1 = \frac{2}{Q^2} \sum_{i \in X} \min\{q_B \cdot p_i, q_J \cdot p_i\}$$

 $q_J = q + xP$

Factorization Theorem for DIS thrust

Start in QCD:

$$\frac{d\sigma(x,Q^2)}{d\tau_1} = L_{\mu\nu}$$

$$W^{\mu\nu}(x,Q^2,\tau_1) = \int d^4x \, e^{iq\cdot x}$$

Measure au_1 :

 $_{\mu\nu}(x,Q^2)W^{\mu\nu}(x,Q^2,\tau_1)$

ptonic tensor

hadronic tensor

of particles crossing the cut

Factorization Theorem for DIS thrust

Factor collinear and soft matrix elements:

$$W_{\mu\nu}(x,Q^{2},\tau_{1}) = \int d^{2}\tilde{p}_{\perp} \int d\tau_{J}d\tau_{B}d\tau_{S} C^{*}(\zeta)$$
soft function $\times \langle 0|[Y_{n'_{J}}^{\dagger}Y_{n'_{B}}^{\dagger}](0)\delta(k_{S}-n'_{J}\cdot\hat{p})$
beam function $\times \langle P_{n_{B}}|\bar{\chi}_{n_{B}}(0)\delta(Q_{B}\tau_{B}-n_{B}\cdot \chi)\rangle$
jet function $\times \langle 0|\chi_{n_{J}}(0)\delta(Q_{J}\tau_{J}-n_{J}\cdot\hat{p})\rangle$

jet function

$$\frac{1}{\sigma_0} \frac{d\sigma(x, Q^2)}{d\tau_1^b} = H(Q^2, \mu) \int d^2 p_\perp dx + J_q(t_J - \mathbf{p}_\perp^2, \mu) \mathcal{B}$$

Nonperturbative corrections

• In general, soft function expressed as convolution of perturbative part and nonperturbative shape function:

$$S(k_S,\mu) = \int dl \, S_{\rm PT}(k_S - l,\mu)$$

• For large enough $\tau(k_S)$, leading effect is a shift:

$$\langle e \rangle = \langle e \rangle_{\rm PT} + c_e \frac{\Omega_1}{Q}$$

soft radiation sees only direction, not energy, of original collinear partons, invariant to boosts along z

- calculable coefficient
- S_{1} universal nonperturbative parameter

• Rigorous proof (and field theory definition of Ω_1) from factorization theorem and boost invariance of soft radiation:

DIS thrust cross sections

Tail region, fixed x, low to high Q:

DIS thrust cross sections

Tail region, fixed Q, low to high x:

DIS thrust cross sections

Experimental sensitivity and strong coupling

Current theoretical uncertainty vs. HERA or EIC coverage:

Current theoretical uncertainty on the order of 1% sensitivity to α_s and PDF uncertainties:

- N³LL resummed predictions for DIS thrust to be published soon.
- Event shapes in DIS promising candidates for precision determination of strong coupling, PDFs, and hadronization corrections
- Results from HERA or an EIC may shed light on "low" value of LEP event shape determinations of strong coupling

Outlook