Food for Thought

and to Trigger Discussions

E.C. Aschenauer

Electron Ion Collider

U.S. DEPARTMENT OF Office of Science

Paul Newman as co-convener

Paul.Newman@cern.ch

YR-WG Complementary Detectors, 08.04.2020

E.C. Aschenauer

Questions to be answered

Physics:

- what physics processes have contradictory requirements not able to consolidate in one detector
- what physics processes need a dedicated detector / cannot be fulfilled by a generalpurpose detector
- > which physics processes need modifications to the EIC IR design
- > what is driving the systematic uncertainties of the measurements you are studying

Subdetectors:

- > document performance of different subdetector technologies
 - resolution
 - material budget
 - radiation hardness
 - cost and time to construct the subdetector
 - how much longer till the technology is ready for mass production or is it shovel ready
 - what drives the systematics of a subdetector using a specific technology
 - any rate limitations
- > any limitations in the performance for very small bunch spacing =< 2ns

is +/- 4.5 m enough to fit the detector

Detector and Physics:

- > What Magnetic field is optimal
- > what inner radius of the magnet is needed
- > any problems if the focusing quadrupoles would be inside the detector volume

Simulation tools:

- Is a fast smearing generator enough to answer the complementarity questions to Physics WGs
- Do the Detector WGs have all simulation tool in hand to answer the questions
- Is there any chance to have a complete detector simulation available in the YR time frame

Provocative Question

What is the advantage to have one detector ? IR design which can only do part of the physics program

Funding Requirements

What is included in the Project: Nomenclature:

experimental equipment includes main and forward detector interaction region: all accelerator equipment between the crab-cavities including polarimeters and Luminosity monitor and spin rotators

Remember:

US costing includes overhead (location dependent), contingency (35%) and labor costs to avoid confusion I quote only direct costs for subdetectors and equipment in general See also Rolf's US Costing 101 slide <u>EICUG_1st_YR_Meeting_Temple_Timeline_v4.pdf</u>

Let's go to numbers:

```
Interaction Region:
Total: $106 M
with IR Magnets + Spin Rotator: $68 M
Crab cavities: $21 M
```

Experimental Equipment:

Total: \$150M for labor and M&S \rightarrow more details to come

C		
runaing	Keguirement	TS
runains	KEQUITEMEN	2

	Cost End 2010	Accountions
Control Detector	Cost End 2019	Assumtions
Magnet	\$25,000,000,00	
ECal	\$6 142 559 00	reuse large fraction of an ECal, need new readout
HCal	\$6,142,555.00	reuse HCAL preferably integrated to Magent, need new readout
TBC or MM Parrel	\$130,000.00	reuse next preferably integrated to magent, need new readout
Watter	\$5,220,000.00	
p-venex	\$5,756,205.00	
RICH / DIRC	\$10,602,500.00	
Total	\$30,915,522.00	
Hadron Endcap		
RICH	\$10,200,000.00	
ECal	\$665,411.00	use existig ECal-towers, need new readout
HCal	\$7,316,000.00	
Tracking	\$470,000.00	
Tracking behind RICH	\$1,206,300.00	
Low-rapidity tracking	\$5,239,429.00	
Total	\$25,097,140.00	
Lepton Endcap		
RICH	\$4,241,000.00	
ECal	\$5,073,524.00	
HCal	\$7,316,000.00	
Tracking	\$470,000.00	
Low-rapidity tracking	\$5,239,429.00	
Total	\$22,339,953.00	
Electronics		
DAQ / Trigger	\$6,000,000.00	
Infrastructure		
Integration	\$12,768,743.44	
Auxilliary Detectors	¢650,000,00	
ZDC	\$650,000.00	
P0 Datastors	\$1,500,000.00	
Loss On Transm	\$E00.000.00	
Low Q2-1agger	\$2,650,000.00	
Complete Total:	\$2,000,000.00	
Complete Fotal:	\$115,705,158.44	
Cost to Project:	\$59 246 800 44	
Cost to 1 tojetti	\$\$\$j240,000.44	

Estimated 315 FTEs over a period of 9 years amounts to \$88 M using BNL labor bands

Assumptions:

reuse existing equipment

- > ECal towers in Hadron Arm
- HCal towers in Central Det.
- ECal towers in Central Det.
- Reuse an existing Solenoid
- In-kind contributions: in the order of \$35M

Funding Requirements

What is needed for the 2nd detector and IR

- > everything which was discussed on the slide before
- Detector system: Main and forward detectors \$120 M + the cost for the assumed reused equipment ~\$ 25 M
 - Labor is normally assumed 1:1 to the hardware cost: \$145 M
 - \checkmark this number depends strongly on the methodologies used in different countries for costing
- > Interaction Region: \$ 106 M this cost might increase if IR design changes significantly

Total: \$251 M for M&S and equivalent of \$145 M for labor

We can also for 2nd Detector offset M&S cost for experimental equipment reusing existing equipment:

- > an other Detector Solenoid
- > Jlab has enough PGWO4 towers for a lepton endcap ECal
- BABAR DIRC bars for Central Detector PID

> everything else which fulfills the requirements as determined by YR studies

Meeting organization

Please everybody sign up to <u>eicug-yr-detector-complementarity@eicug.org</u>

Frequency: every 2 weeks

want to mix meetings with all Detector and Physics WG conveners only and the EIC-UG as a whole

- First meetings to establish what work has already been done in the working groups to address the complementarity of two EIC detectors
 - conveners' best people to summarize as they have the overview
- > to make the input from the entire user group constructive will organize a meeting with
 - initial presentation the current status
 - an open mic session people can articulate their ideas and concerns

YR-WG Complementary Detectors, 08.04.2020

IR Requirements from Physics

	Hadron	Lepton	
Machine element free region	High Luminosity → beam elements need to be very close to IP eRHIC: +/- 4.5 m JLEIC: +/- 3.5 m for main detector		
Beam pipe	Low mass material i.e. Beryllium		
Low Q ² tagger		Acceptance: Q ² < ~0.1 GeV	
Zero Degree Calorimeter	60cm x 60cm x 2m @ ~30 m		
scattered proton/neutron acc. all energies for ep scattered proton/neutron acc. all energies for eA	Proton: $0.2 \text{ GeV} < p_t < 1.3 \text{ GeV}$ Neutron: $p_t < 1.3 \text{ GeV}$ Proton and Neutron: $\Theta < 6 \text{ mrad} (\sqrt{s}=50 \text{ GeV})$ $\Theta < 4 \text{ mrad} (\sqrt{s}=100 \text{ GeV})$		
	Relative Luminosity: $R = 1 + \frac{1}{-1} + \frac{1}{-1} < 10^{-4}$		
Luminosity		γ acceptance: +/- 1 mrad $\rightarrow \delta L/L < 1\%$	

Requirements for EIC Detectors

YR-WG Complementary Detectors, 08.04.2020

Popular choices for the Major Subsystems

Vertex detector → Identify event vertex, secondary vertices, track impact parameters Silicon pixels, e.g. MAPS

Central tracker \rightarrow Measure charged track momenta Drift chamber, TPC + outer tracker or Silicon strips

Forward tracker → Measure charged track momenta GEMs, Micromegas, or Silicon strips, MAPS

Particle Identification → pion, kaon, proton separation Time-of-Flight or RICH + dE/dx in tracker

Electromagnetic calorimeter → Measure photons (E, angle), identify electrons Crystals (backward), Shashlik or Scintillator/Silicon-Tungsten

Hadron calorimeter \to Measure charged hadrons , neutrons and $K_L{}^0$ Plastic scintillator or RPC + steel

+ Beam pipe, Solenoid, very forward and backward detectors

Impact of eRHIC Accelerator Design on Detector Design

high luminosity 10³³⁻³⁴ cm⁻²s⁻¹:

- > use detector technologies which can with stand high rates and radiation
- \succ focusing magnets as close as possible to IP \rightarrow confined space of detector

High collision frequency

- separation of signal to background becomes more challenging
 - bunch-by-bunch polarization measurement needs to be adapted

crossing angle

- > need excellent vertex resolution to correct for the crossing angle in the measurement
- asymmetric beam energies \rightarrow boosted kinematics \rightarrow high activity at high $|\eta|$
- a large acceptance detector is a must

colliding different beam species: ep & eA has consequences for beam backgrounds
 hadron beam backgrounds, i.e. beam gas events and synchrotron radiation
 detector and IR need protection systems designed in

nuclear beams: D to Pb

> high acceptance for nuclear breakup particles \rightarrow p,n, γ

polarized electron and hadron (p,d,He-3) beams:

high precision lepton and hadron polarimetery → bunch-by-bunch
 high precision luminosity measurement → spin sorted

Hadron PID Requirements

Interplay between different technologies

EIC General Purpose Detector: Concept

EIC General Purpose Detector: Concept

A general purpose EIC Detector system is complex

> Large rapidity (-4 < η < 4) coverage

- Electromagnetic and Hadronic Calorimetry
- > Particle ID detectors (positive π , K, p identification)
- > Tracking: small (μ -vertex) and large radius (i.e. TPC) Tracking
- > need all to be realized in +/- 4.5 m

detector components extend along the beam line: Roman Pots, ZDC,
 Ancillary Detectors: electron & hadron Polarimetry, luminosity monitors

crossing angle to separate beams and avoid synchrotron radiation from dipoles

Important detectors:

Hadron Beam: Si detectors in BO, Roman Pot, low-E Detectors, Zero Degree Calorimeter Lepton Beam: LowQ² tagger

General: Luminosity Detector, electron and hadron polarimetry (different location)