comptonRad generator results

Ciprian Gal

Center for Frontiers in Nuclear Science

Simulation setup

- To understand the generator (and cross check with others) I look at the output fron it directly and will apply increasingly more corrections
 - Version control available in the EIC MCEG rep
- The generator gives out the 4-momentum for both the photon and electron together with 4 weight factors: unpolarized and polarized tree level cross sections (eq 26,27 of paper) and the order alpha corrections (not used for the following analysis)
 - Not yet passed through magnetic fields or G4 geometry (magnet apertures) – although most of the photons pass significantly below the 9 cm radius of the last Quad
- To obtain the average analyzing power for a particular configuration (or average over any number of bins) we need to weight by cross section
- Most plots in this presentation are for 18GeV electron and 532nm laser

https://arxiv.org/pdf/hep-ph/9711447.pdf

https://gitlab.com/eic/mceg/comptonRad

$$W_{1} = \frac{1}{2\rho^{(n)}(x)} \left[\frac{d^{n}\sigma^{(0)}}{dx^{n}}(s, -) + \frac{d^{n}\sigma^{(0)}}{dx^{n}}(s, +) \right] \text{ unpolarized xsection (26)}$$
$$W_{2} = \frac{1}{2\rho^{(n)}(x)} \left[\frac{d^{n}\sigma^{(0)}}{dx^{n}}(s, -) - \frac{d^{n}\sigma^{(0)}}{dx^{n}}(s, +) \right] \text{ polarized xsection (27)}$$

$$A_N = \frac{\sigma^- - \sigma^+}{\sigma^- + \sigma^+} = \frac{\sigma^p}{\sigma^u} \equiv \frac{W_1}{W_2}$$
$$\langle A_N \rangle = \frac{\sum_i A_{N,i} \cdot \sigma_i^u}{\sum_i \sigma_i^u} = \frac{\sum_i \sigma_i^p}{\sum_i \sigma_i^u}$$
$$E \cdot A_N \rangle = \frac{\sum_i E_i \cdot \sigma_i^p}{\sum_i E_i \cdot \sigma_i^u}$$

Simulation setup

- The electron and photon were projected 25m downstream to look at the distributions on the face of the detector
 - From here we can calculated the analyzing powers
- The average unpolarized cross section (per bin) on the right show that the photons are (mostly) contained in a 4x4mm2 detector while the electrons sit (totally?!) withing 0.23x0.23 mm2

https://arxiv.org/pdf/hep-ph/9711447.pdf

https://gitlab.com/eic/mceg/comptonRad

-0.1

0.1

0.2

0.3

0.4

0.5 x[mm]

Average energy/asymmetry

gamma energy*unpolXsec z=25000 mm

- The average energy distribution is up to 7.04 GeV for the photon and almost 18 GeV for the electron
- The average asymmetries (in each bin) show a significantly different distributions for the electrons from the photons
 - The maximized asymmetry at the edges of the Compton edge for the electrons could offer some leverage to increase our sensitivity

Vertical asymmetry

- We can observe the same behaviour if we look at the asymmetry as a function of the vertical position on the detector (i.e. the photon AN sits on a very steep slope at the center while the electron maximizes at the edges)
 - This means that the photon detector will be much more sensitive to the positioning (or beam instabilities)
- Doing energy weighting gains us a little bit in terms of AN for the photons

AUD and position offsets

Vertical axis: (<A>up - <A>down)/2

aud gamma energy*polXsec z=25000 mm

<A>up

<A>down

- If we look at the sign corrected average asymmetry for the upper and lower part of the detector plane it can give us the effective analyzing power
- If we move where were do the integration it can tell us about position sensitivities for the photon detector
 - Photon: <A> drops by ~1% at about 70um and <EA> drops by ~1% at 110um
- For the electron moving off center will add more "non-sensitive" events to one side and increase the <A> for the other

Ciprian Gal

0.05

0 1

0.15

0.2

v position [mm]

-0.15

-0.1

-0.05

Stony Brook University

 $\times 10^{-3}$

0.12

0.1

0.08

0.06

0.04

0.02

AUD and multiple particle msmt

counts electron unpolXsec z=25000 mm

- Sampling randomly from the unpolarized distributions we can get a sense of the distance between two events and answer the question if these particles could be measured at the same time
- The distance between the particles would not allow for separation using only calorimetry (lead tungstate has a Mollier radius of 2.2cm)
- The segmentation for the electron detector is going to be much more stringent

Scan over energies

• I took a look at the other two energies and qualitatively things are similar to what we discussed already besides the asymmetries and cross sections

Scan over energies

 While this was probably obvious it bears repeating that the center of the detector will be more important with a higher density of particles at higher and higher energies

To do

- Investigate the beam envelope effects (electron beam width and divergence)
- Add these to a G4 setup with a beampipe, magnet apertures (probably not that important) and air
- Repeat analysis for IP6

backup

AUD and multiple particle msmt

AUD and multiple particle msmt

10

* Stony Brook University

Ciprian Gal