# Photo/electro-production at an EIC

#### SAMUEL HEPPELMANN

UC DAVIS & LBNL

#### SAMUEL HEPPELMANN | UC DAVIS

## Photoproduction & electroproduction at an EIC

### **Overview of eSTARlight**

Coherent photonuclear cross-sections are parameterizations of  $\sigma(\gamma p)$  from HERA/fixed target data or theory

Convolution of photon flux from electron with  $\sigma(\gamma p \rightarrow Vp)$ 

• Both depend on Q<sup>2</sup>

Weizsacker-Williams photon flux (with non-zero Q<sup>2</sup>)

Nuclear targets included with a Glauber calculation

Vector mesons retain the photon spin

- For Q<sup>2</sup> ~ 0, transversely polarized
- As Q<sup>2</sup> rises, longitudinal polarization enters
- Spin-matrix elements quantified with HERA data

Embodied in eSTARlight code, available at: http://estarlight.hepforge.org



## **Coherent Vector Meson Production** eSTARlight

Systems studied:

Collider configurations:

Electron (18 GeV) on Au (100 GeV) for and Electron (18 GeV) on protons(250 GeV) Electron (18 GeV) on protons(100 GeV)

Vector Mesons:

 $J/\psi \rightarrow e^+e^-$ Y(1S), Y(2S), Y(3S)  $\rightarrow e^+e^-$ 

Rapidity Beam Convention

$$p/Au \longrightarrow e^-$$



Photoproduction of J/ $\psi$  (Q<sup>2</sup> < 1 GeV<sup>2</sup>)

 $p/Au \longrightarrow e^-$ 

### $J/\psi \rightarrow e^+e^-$

Electron (18 GeV) on Au (100 GeV) Electron (18 GeV) on protons(100 GeV)



At low  $Q^2$ , the scattered electron is less than 1 radian

For VM Production, a larger target has narrower rapidity range.



Electroproduction of  $J/\psi$  ( $Q^2 > 1 \text{ GeV}^2$ )

 $J/\psi \rightarrow e^+e^-$ 

Electron (18 GeV) on Au (100 GeV) Electron (18 GeV) on protons(100 GeV)



As we push to higher  $Q^2$ , easier to measure the scattered electron

Similar Rapidity distribution for higher  $Q^2$ 



### **Bjorken-x for proton and Au targets** $J/\psi$ ( $0 < Q^2 < 10 \text{ GeV}^2$ )



Probe lower bjorken-x with heavier target

### Bjorken-x for proton and Au targets $J/\psi$ ( $0 < Q^2 < 10 \text{ GeV}^2$ )

**Detector Acceptance requirements** 



SAMUEL HEPPELMANN | UC DAVIS

### Bjorken-x for proton and Au targets $J/\psi$ and Y(1S) ( $0 < Q^2 < 10 \text{ GeV}^2$ )



### Full Detector Simulation & Reconstruction



BeAST Detector (Brookhaven eA Solenoidal Tracker) •Silicon Tracker

4 layers with  $0.3\% X_0$  each

#### •TPC

2 m long, Gas: Argon:Freon:Isobutane(95:3:2) •Silicon Endcap Disks

6 disks



#### LBNL All-Silicon Detector

(Developed by LBNL's eRD16 generic EIC detector project)

#### •Silicon Tracker

6 layers

#### •Silicon Endcap Disks

5 disks



## Bjorken-x for Reconstructed J/ $\psi$ ( 0 < Q<sup>2</sup> < 10 GeV<sup>2</sup>)



Full Detector Simulation & Reconstruction

 $J/\psi \rightarrow e^+e^-$ 

Comparison of rapidity distributions for different  $Q^2$  regions

for:

```
e + p ( 18 GeV on 250 GeV )
e + A ( 18 GeV on 100 GeV Au)
```



Full Detector Simulation & Reconstruction



Resolution drops at backward rapidity



Full Detector Simulation & Reconstruction



Resolution drops at backward rapidity



### **Bjorken-x Rapidity Distribution** $eA | Y(1S) \rightarrow e^+e^- (0 < Q^2 < 10 \text{ GeV}^2)$



SAMUEL HEPPELMANN | UC DAVIS

### **Upsilon 1S,2S,3S Reconstructed in EICROOT All-Silicon Detector**

140F 80 120  $10 f b^{-1} / 197$  $10 f b^{-1} / 197$ 70 100 60 80 50 40 60 30 40 20 20 10 0 <mark>-</mark>8 0⊾ 8 9.5 10.5 10 11 8.5 9 8.5 9.5 10 10.5 9 11  $GeV/c^2$ 1.5 Tesla GeV/c<sup>2</sup> 3.0 Tesla

Separating upsilon peaks should be a detector requirement

Upsilon peaks are still distinguishable with a lower B-Field

## **Conclusion & Future Work**

#### eSTARlight simulations for photoproduction & electroproduction at an EIC

Vector Mesons:

- $J/\psi \rightarrow e^+e^-$
- $\Upsilon(1S), \Upsilon(2S), \Upsilon(3S) \rightarrow e^+e^-$
- Acceptance /Bjorken-x distributions of the J/ $\psi$  and Y(1S).

#### Preliminary studies with eSTARlight in EICROOT (BeAST & LBNL All-Silicon Detectors)

- Reconstruction efficiency
- Detector resolution for different field strengths and acceptance cuts

#### OutLook:

Study  $\phi \to K^+ K^-$ 

More extensive resolution studies:

- Higher statistics
- Resolution fits with Crystal Ball Function
- Study resolution in t (tagging outgoing electron)