EIC "second option" solenoid modeling for the Yellow Report (and beyond)

Alexander Kiselev

EICUG YR Magnet Design Meeting April,8 2020

Motivation & goals of this meeting

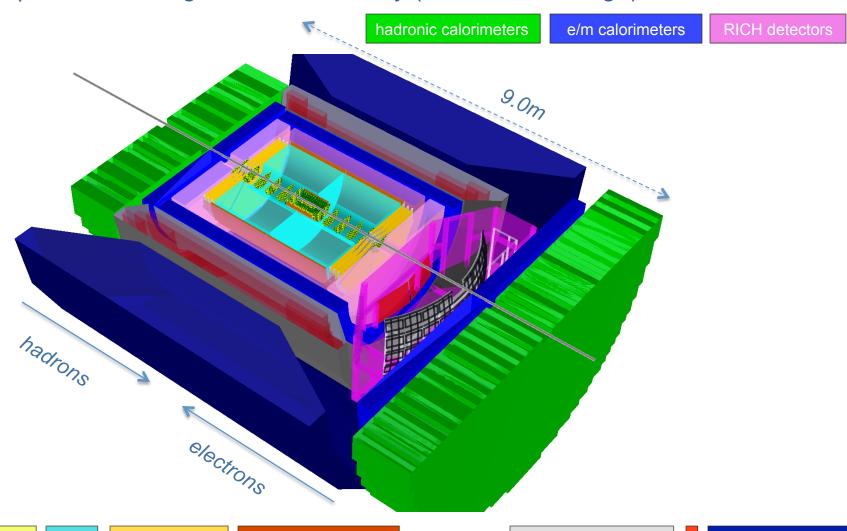
- The EIC community is in favor of having two detectors ...
- ... therefore even that BaBar magnet is available, a second one will be needed anyway

- Discuss the scope for the Yellow Report (and pCDR + CD-1)
- Think on the responsibilities and timelines

Questions & specs

- Can we come up with a better (non-Babar) model for the YR?
- Specifications:
 - Up to 3T central field
 - Specially tuned fringe field configuration in the forward RICH volume
 - Bore diameter ~3m, length ~3m (coils), etc
 - Acceptable stray field in the hall, ...
- Options:
 - Field clamps, flux return through HCal?
 - Active compensation coils between EmCal & HCal?
- Compensation for beam optics (new task force led by Vasiliy)

Example: BeAST detector

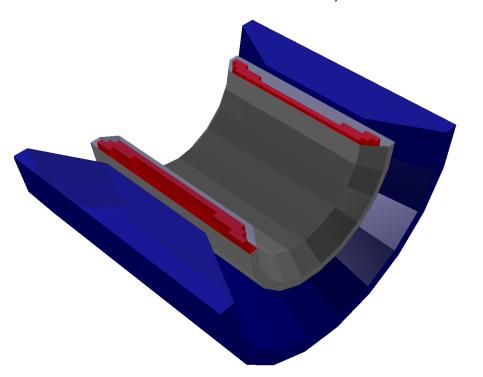

 $-3.5 < \eta < 3.5$: Tracking & e/m Calorimetry (hermetic coverage)

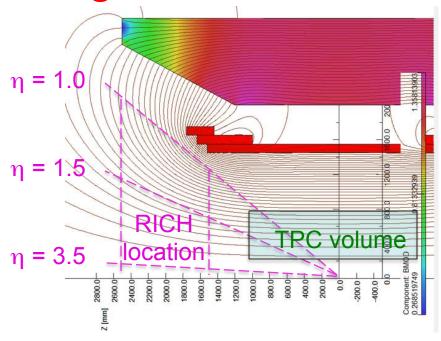
Micromegas barrels

silicon trackers

TPC

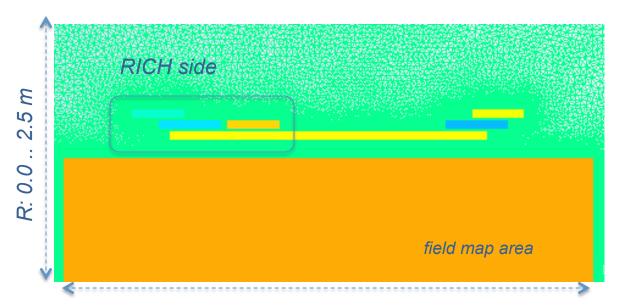
GEM trackers


3T solenoid cryostat


magnet yoke

Example: BeAST magnetic field

Goal:


- Implement in the same compact design:
 - homogeneous ~3T field in the TPC
 - hadron-track-aligned field in the RICH
- Keep it simple (no dual solenoid configuration; no reversed current coils; no flux return through HCal; no warm coils between RICH and EmCal)

Central field	3T	
Current density	23 A/mm ²	
Full current	4.6 kA	
Main coil radius	1500 mm	
Coil pack length	3520 mm	
Cryostat inner radius 1350 mm		

Example: BeAST optimization for RICH

- RICH side (hadrongoing direction) gets tuned
- The other side stays almost the same as required for the homogeneous field in the central area

Z: +/-2.5m around the IP

R _{min} , [mm]	R _{max} , [mm]	Length, [mm]	Z-offset, [mm]	Current, [A/mm²]
1610	1700	500	1600	-20
1510	1600	500	700	12
1510	1600	600	1300	40
1400	1500	3000	0	24
1510	1600	600	-1400	34
1610	1700	500	-1600	12

Deliverables

- A short list of milestones this week (as required by Elke)
- A tentative "best guess" field map is needed early in the process (and we have software means to make it public)

- A straw man solenoid design by October, according to the specs
- A ballpark cost estimate
- All the work should be "triple purpose" (YR, pCDR, CD-1) and serve as a start for the "actual" design work later