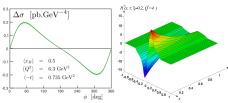
DE LA RECHERCHE À L'INDUSTRIE


www.cea.fr

GPD studies with PARTONS

Weekly Meeting Excl. Proc. WG | Hervé MOUTARDE

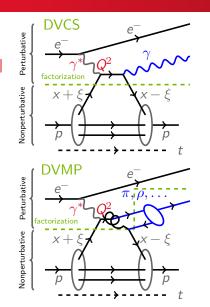
Apr. 24, 2020

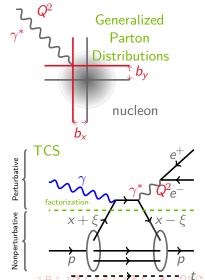
This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 824093.

Exclusive processes of current interest. Factorization and universality.

PARTONS and GPDs

CFF global fits


Parametric fit
Neural network fits


Multi-channel

TCS: Data-driven impact study Probing NLO contributions

PARTONS

Open source YR timeline Next 3 years

Compton Form Factors. DVCS amplitude in the Bjorken regime.

PARTONS and GPDs

CFF global fits Parametric fit

Neural network fits

Multi-channel analysis

TCS: Data-driven impact study Probing NLO contributions

PARTONS

Open source YR timeline Next 3 years

Conclusion

Bjorken regime : large Q^2 and fixed $xB \simeq 2\xi/(1+\xi)$

- Partonic interpretation relies on factorization theorems.
- All-order proofs for DVCS, TCS and some DVMP.
- GPDs depend on a (arbitrary) factorization scale μ_F .
- **Consistency** requires the study of **different channels**.
- GPDs enter DVCS through **Compton Form Factors** :

$$\mathcal{F}(\xi,t,\mathbf{Q}^2) = \int_{-1}^1 \mathrm{d}\mathbf{x} \, C\left(\mathbf{x},\xi,\alpha_{\mathrm{S}}(\mu_{\mathrm{F}}),\frac{\mathbf{Q}}{\mu_{\mathrm{F}}}\right) F(\mathbf{x},\xi,t,\mu_{\mathrm{F}})$$

for a given GPD F.

 \blacksquare CFF \mathcal{F} is a **complex function**.

CFF global fits

First global CFF fit with PARTONS. Assumptions, limits and key ingredients.

PARTONS and GPDs

GPD channels

CFF global fits

Neural network fits

Multi-channel analysis

TCS: Data-driven impact study Probing NLO contributions

PARTONS

Open source YR timeline Next 3 years

Conclusion

■ Leading twist and leading order analysis.

- Focus on the quark sector (intermediate to large x_B).
- Dispersion relations: CFF \mathcal{H} depends on **D-term** and border function $H(x, \xi = x)$.
- Tomography: model **skewing function** H(x, x, t)/H(x, 0, t) consistently with perturbative QCD.
- Fit to PDFs and elastic form factors.
- Propagate uncertainties by replica method.

Moutarde *et al.*, Eur. Phys. J. **C78**, 890 (2018)

2600 experimental points, 13 free parameters, $\chi^2/\text{dof} \simeq 0.91$.

PARTONS and GPDs

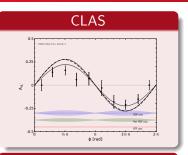
GPD channels

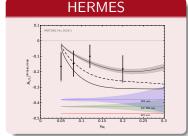
CFF global fits

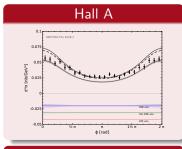
Parametric fit

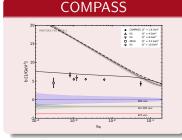
Neural network fits

Multi-channel analysis


TCS: Data-driven impact study Probing NLO


contributions


Open source YR timeline


Next 3 years

Conclusion

Neural network global fit of CFFs. All existing sets except $d^4\sigma_{\text{TIII}}^-$ from Hall A (2015-17).

PARTONS	No.	Collab.	Year	Ref.	Observa	ble	Kinematic dependence	No. of points used / all
and GPDs	1	HERMES	2001	40	A_{LU}^+		φ	10 / 10
	2		2006	41	$A_C^{\cos i\phi}$	i = 1	t	4/4
	3		2008	42	$A_C^{\cos i\phi}$	i = 0, 1	x_{Bj}	18 / 24
600 1					$A_{UT,DVCS}^{\sin(\phi-\phi_S)\cos i\phi}$	i = 0		
GPD channels					$A_{UT,I}^{\sin(\phi-\phi_S)\cos i\phi}$	i = 0, 1		
					$A_{UT,I}^{\cos(\phi-\phi_S)\sin i\phi}$	i = 1		
CFF global fits	4		2009	43	$A_{LU,I}^{\sin i\phi}$	i = 1, 2	x_{Bi}	35 / 42
Parametric fit					$A_{LU,\mathrm{DVCS}}^{\sin i\phi}$	i = 1	- 23	/
Neural network fits					$A_C^{\cos i\phi}$	i = 0, 1, 2, 3		
	5		2010	44	$A_{III}^{+,\sin i\phi}$	i = 1, 2, 3	x_{Bi}	18 / 24
Multi-channel				_	$A_{I.I.}^{+,\cos i\phi}$	i = 0, 1, 2	•	
analysis	6		2011	45	$A_{LL}^{+,\cos i\phi}$ $A_{LT,DVCS}^{\cos(\phi-\phi_S)\cos i\phi}$	i = 0, 1	x_{Bi}	24 / 32
*					$A_{LT,DVCS}^{\sin(\phi-\phi_S)\sin i\phi}$	i = 1		
TCS: Data-driven					$A_{LT,I}^{\cos(\phi-\phi_S)\cos i\phi}$	i = 0, 1, 2		
impact study					$A_{LT,I}^{Sin(\phi-\phi_S)\sin i\phi}$	i = 1, 2		
Probing NLO	7		2012	46	$A_{LU,I}^{\sin i\phi}$	i = 1, 2	x_{Bi}	35 / 42
contributions			2012	(20)	$A_{LU,\mathrm{DVCS}}^{\sin i\phi}$	i = 1, 2 i = 1	w.BJ	55 / 12
PARTONS					$A_C^{\cos i\phi}$	i = 0, 1, 2, 3		
FAILTONS	8	CLAS	2001	47	$A_{LU}^{-,\sin i\phi}$	i = 1, 2	_	0 / 2
Open source	9		2006	48	$A_{UL}^{=i\sin i\phi}$	i = 1, 2	_	2 / 2
YR timeline	10		2008	49	A_{LU}^{L}	-,-	φ	283 / 737
Next 3 years	11		2009	50	$A_{LU}^{\underline{L}U}$		φ	22 / 33
	12		2015	51	$A_{LU}^-, A_{UL}^-, A_{LL}^-$		ϕ	311 / 497
Conclusion	13		2015	52	$d^4\sigma_{IIII}^-$		ϕ	1333 / 1933
	14	Hall A	2015	34	$\Delta d^4 \sigma_{LU}^-$		ϕ	228 / 228
	15		2017	35	$\Delta d^4 \sigma_{LU}^2$		ϕ	276 / 358
	16	COMPASS	2018	36	$d^3\sigma_{UU}^{\pm}$		t	2 / 4
ĺ	17	ZEUS	2009	37	$d^3\sigma_{UU}^+$		t	4 / 4

18

19

H1

2005

2009

Moutarde *et al.*, Eur. Phys. J. **C79**, 614 (2019)

 $d^3\sigma_{UU}^+$ $d^3\sigma_{UU}^\pm$

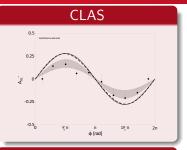
12 / 12

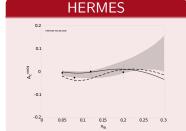
2600+ measurements of 30 observables published during 2001-17.

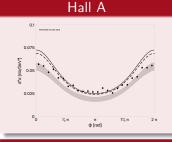
PARTONS and GPDs

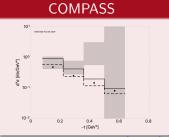
GPD channels

CFF global fits


Parametric fit
Neural network fits


Multi-channel analysis


TCS: Data-driven impact study Probing NLO contributions


PARTONS

Open source YR timeline Next 3 years

2600+ measurements of 30 observables published during 2001-17.

PARTONS and GPDs

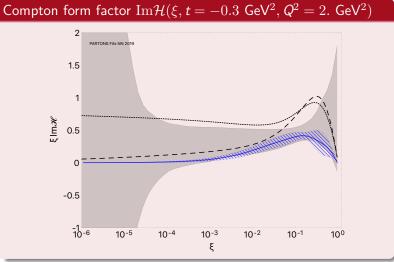
GPD channels

CFF global fits

Parametric fit

Neural network fits

Multi-channel


analysis TCS: Data-driven impact study

impact study
Probing NLO
contributions

PARTONS Open source

YR timeline Next 3 years

Conclusion

Moutarde et al., Eur. Phys. J. C79, 614 (2019)

2600+ measurements of 30 observables published during 2001-17.

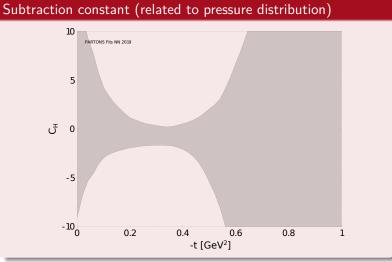
PARTONS and GPDs

GPD channels

CFF global fits

Parametric fit

Neural network fits


Multi-channel analysis

TCS: Data-driven impact study Probing NLO

contributions

PARTONS Open source

YR timeline Next 3 years

Multi-channel analysis

Assessing the universality of GPDs. Intimate relation between TCS and DVCS due to analyticity.

PARTONS and GPDs

CFF global fits
Parametric fit
Neural network fits
Multi-channel
analysis

Relation between spacelike (DVCS) and timelike (TCS) CFFs worked out at NLO:

$$\begin{array}{ccc}
^{T}\mathcal{H} & \stackrel{\mathrm{LO}}{=} & {}^{S}\mathcal{H}^{*}, \\
^{T}\mathcal{H} & \stackrel{\mathrm{NLO}}{=} & {}^{S}\mathcal{H}^{*} - i\pi \mathcal{Q}^{2} \frac{\partial}{\partial \mathcal{Q}^{2}} {}^{S}\mathcal{H}^{*},
\end{array}$$

with Q the virtuality of the incoming or outgoing photon. Müller *et al.*, Phys. Rev. **D86**, 031502 (2012)

TCS: Data-driven impact study
Probing NLO contributions
PARTONS

Open source

YR timeline

Using a global CFF fit to DVCS measurements, the first multi-channel data-driven analysis of exclusive processes beyond LO becomes possible!

Next 3 years

Conclusion

 First step towards multi-channel fits to exclusive processes.

See J. Wagner's talk at the Temple meeting

From DVCS to TCS.

Prediction of TCS CFF at 68 % confidence level.

PARTONS and GPDs

kinematics: $Q^2=2~{\rm GeV^2}$ and $t=-0.3~{\rm GeV^2}$.

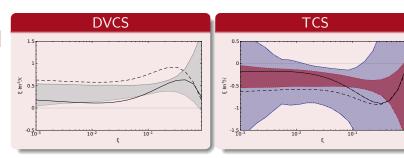
GPD channels CFF global fits

Parametric fit
Neural network fits

Multi-channel analysis

TCS: Data-driven impact study

Probing NLO contributions


PARTONS

Open source YR timeline Next 3 years

Conclusion

- ϵ range from EIC to Jefferson Lab kinematics.
- ξ range from EIC to Jenerson Lab kinematics.
- Comparison with phenomenological model at LO (dashed) and NLO (solid).

• Spacelike and timelike CFFs depending on ξ at common

Grocholski et al., Eur. Phys. J. C80, 171 (2020)

The PARTONS framework

PARtonic Tomography Of Nucleon Software

Computing chain design. Differential studies: physical models and numerical methods.

PARtonic

PARTONS and GPDs

GPD channels CFF global fits

Parametric fit
Neural network fits

Multi-channel analysis

TCS: Data-driven impact study Probing NLO contributions

PARTONS

Open source YR timeline Next 3 years

Conclusion

Full processes Experimental

data and

phenomenology

Small distance

Computation of amplitudes

Large distance

First principles and fundamental parameters

Tomography Of Nucleon Software Perturbative

- approximations.

 Physical models.
- Fits.
- Numerical methods.
- Accuracy and speed.

DVMP

DVMP

Evolution

LCS

GPD at $\mu \neq \mu_F^{\text{ref}}$

GPD at μ_{F}^{ref}

DVCS

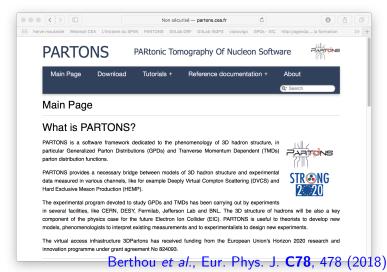
Open source release. Now PARTONSv2: features TCS and more!

PARTONS and GPDs

GPD channels

CFF global fits

Parametric fit Neural network fits


Multi-channel analysis

TCS: Data-driven impact study Probing NLO contributions

PARTONS

Open source YR timeline

Next 3 years

Open source release. Now PARTONSv2: features TCS and more!

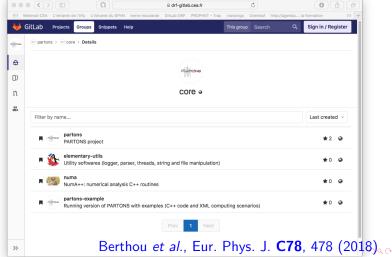
PARTONS and GPDs

iii drf-qitlab.cea.fr

GPD channels CFF global fits

Parametric fit

Neural network fits Multi-channel


analysis TCS: Data-driven

impact study Probing NLO contributions

PARTONS Open source

YR timeline Next 3 years

Conclusion

Publicly available on CEA GitLab server

14 / 19

EIC contributions.

Focus on plausible deliverables within the YR timeline.

PARTONS and GPDs

GPD channels

CFF global fits
Parametric fit
Neural network fits

Multi-channel analysis TCS: Data-driven

PARTONS

Open source

YR timeline Next 3 years

Conclusion

Ongoing work:

- Cross sections for **exclusive** π^0 **production**. See K. Tezgin's talk (WMEP WG 2020/04/13).
- Various **TCS observables** from several GPD or CFF models under various pQCD assumptions. See J. Wagner's talk (Temple 2020/03/20).
- Extraction of the first Gegenbauer coefficient of the D-term (pressure forces) from global fits to DVCS data.
 - See P. Sznajder's talk today.
- Integration in the MILOU MC generator of tables of CFF output from PARTONS.
- **GPD evolution** computed with **APFEL**.
- Elements that would help:
 - Realistic DVCS mock observables on EIC kinematics.
 - Manpower for (model-dependent) sensivity studies on the GPD F and li sum rule.

Within the next four years. Virtual Access Infrastructure 3DPartons in STRONG-2020.

PARTONS and GPDs

GPD channels

CFF global fits

Parametric fit
Neural network fits

Multi-channel analysis

TCS: Data-driven impact study
Probing NLO contributions

PARTONS

Open source YR timeline

Next 3 years

Conclusion

Work Package tasks

- Flexible software architecture for GPD and TMD codes, elaborating on existing libraries.
- Generic MC event generators for GPDs and TMDs.
- Associated tools to compare theoretical calculations to experimental data.
- Webpage, software forge and mailing lists.
- Documentation, technical assistance and nonregression tests: facilitate dissemination.
- Open Data and Open Science: build on previous research and get new results faster.

H. Moutarde

Conclusion and prospects.

Not covering ongoing theoretical work (longer time scale).

PARTONS

■ We now have tools to **systematically relate** models to and GPDs experimental data in multi-channel analysis.

GPD channels ■ We now have an **operating engine** for global CFF fits. CFF global fits

Next step: GPD fits.

Parametric fit Neural network fits

Multi-channel analysis

TCS: Data-driven impact study Probing NLO contributions

PARTONS

Open source YR timeline Next 3 years

Deliverables within the YR timeline

- Cross sections for **exclusive** π^0 **production**.
- TCS observables
- Impact of EIC on the extraction of the first Gegenbauer **coefficient** of the D-term from global CFF fits.
- Integration in the MILOU MC generator of tables of CFFs output from PARTONS.
- **GPD evolution** computed with **APFEL**.

Commissariat à l'énergie atomique et aux énergies alternatives
Centre de Saclay 91191 Gif-sur-Yvette Cedex

Etablissement public à caractère industriel et commercial R.C.S. Paris B 775 68

4□▶ <</p>
4□▶ <</p>
4□▶
5