

NC STATE UNIVERSITY

JAM Pion PDF Analysis Including Resummation

Patrick Barry, Nobuo Sato, Wally Melnitchouk, and C.-R. Ji Workshop on Pion and Kaon Structure Functions at the EIC Wednesday, June 3rd, 2020 Contact: pcbarry@ncsu.edu

Introduction/Motivation

Pions

- Pion is the Goldstone boson associated with chiral symmetry breaking
- Lightest hadron as $\frac{m_{\pi}}{M_N} \ll 1$ and dictates the nature of hadronic interactions at low energies
- Simultaneously a $q \overline{q}$ bound state

Theoretical Interest

- Behavior of PDF as $x_{\pi} \rightarrow 1$ ($v_{\pi} \sim (1 x_{\pi})^{2\beta}$) has theoretical interest
- Active debate as to whether $\beta = 1$ or 1/2

Theoretical Interest

- Recent lattice calculations as well as phenomenologically determined valence quark PDFs using threshold resummation indicate $\beta = 1$ as opposed to fixed order ($\beta = 1/2$)
- Our analysis with threshold resummation will have impact on this question

Recent Pion Phenomenology

- Recent (M. Aicher, et al, 2010) pion fit to DY data
- Fit uses soft gluon resummation

- Recent (I. Novikov, et al, 2020, xFitter) pion fit to DY and prompt photon data
- Fit uses NLO in α_S

JAM 18 Pion PDFs

- Valence, sea, and gluon distributions were extracted in an NLO analysis
- Drell-Yan (DY) only fit then include the Leading Neutron (LN)

PB, N. Sato, W. Melnitchouk, C. –R. Ji, Phys. Rev. Lett. **121**, 152001 (2018)

JAM 18 Momentum Fractions

- We also compute the momentum fractions for each flavor
- Large difference in in the gluon and sea $\langle x_{\pi} \rangle$ from a DY to a DY+LN analysis
- Gluon carries ~30% of the momentum fraction at the initial scale

Observables

DY Observable and x_F

• Observables in π^-W DY experiments such as E615 and NA10 are

 $\frac{d\sigma}{dx_F dQ^2}$

- It's important to note that while x_F is measured, the parton momentum fraction is *NOT*
- The relation to parton momentum fraction $x_F = x_1^0 x_2^0$ only holds at leading order, where $x_{1,2}^0 = \sqrt{\tau}e^{\pm Y}$, where $\tau = \frac{Q^2}{S}$ and Y is the rapidity
- In an NLO analysis, interpretation cannot remain

$$\frac{d\sigma}{dxdQ^2dy} \sim \int_{p \to \pi^+ n}^{1} (y) \times \sum_{q} \int_{x/y}^{1} \frac{d\xi}{\xi} C(\xi) q\left(\frac{x/y}{\xi}, \mu^2\right)$$

Threshold Resummation in Drell-Yan

Soft Gluon Resummation

- The goal is to sum the contributions of the soft gluon emissions from the quark line to all orders of α_S
- Can perturbatively calculate these emissions to all orders of α_S
- Here, z_i near 1

Exponentiation in Mellin space

- The matrix elements of emitted soft gluons that carry large logarithms are factorized in the Eikonal approximation
- Phase space only factorizes in Mellin space
- Summing over all orders of α_S leads to exponentiation of the Mellin space coefficients

$$\sum_{n=1}^{\infty} C^{(n)}(N) = \sum_{n} \frac{1}{n!} [C_{\text{soft}}^{(1)}(N)]^n$$
$$= \exp\left(C_{\text{soft}}^{(1)}(N)\right)$$

Full Hard Kernel to Calculate

Next-to-Leading + Next-to-Leading Logarithm Order Calculation

Next-to-Leading + Next-to-Leading Logarithm Order Calculation

Add the columns to the rows

Next-to-Leading + Next-to-Leading Logarithm Order Calculation Make sure only counted once! - Subtract the matching NLL NPLL ••• LO 1 ... $\alpha_{\rm s} \log(N)^2$ $\alpha_{\rm s}\log(N)$ NLO ... $\alpha_{\rm S}^2 \log(N)^4$ $\alpha_s^2(\log(N)^2, \log(N)^3)$ NNLO $\alpha_S^k \log(N)^{2k} \quad \alpha_S^k \left(\log(N)^{2k-1}, \log(N)^{2k-2} \right)$ $\ldots \alpha_S^k \log(N)^{2k-2p} + \cdots$ N^kLO

Drell-Yan Rapidity Distribution

- Formulate resummation in Mellin space for Q^2 (or τ) distribution
- For rapidity distribution, introduce a Fourier transform

$$\sigma(N,M) = \int_0^1 d\tau \tau^{N-1} \int_{-\ln 1/\sqrt{\tau}}^{\ln 1/\sqrt{\tau}} dY e^{iMY} \frac{d\sigma}{dQ^2 dY}$$

• To compare with data, must invert back to momentum fraction and rapidity space

$$\frac{d\sigma}{dQ^2dY} = \int_{-\infty}^{\infty} \frac{dM}{2\pi} e^{-iMY} \int_{C_N} \frac{dN}{2\pi i} \tau^{-N} \sigma(N, M)$$

Non-trivial! But beyond the scope of this talk

Extraction Procedure

Kinematic Coverage

- We want to be able to fit simultaneously the Drell-Yan and Leading Neutron data
- We can shape the pion PDFs at both high- and low- x_{π} with both datasets
- E615, NA10 DY
- H1, ZEUS LN

Kinematic Coverage

- We want to be able to fit simultaneously the Drell-Yan and Leading Neutron data
- We can shape the pion PDFs at both high- and low- x_{π} with both datasets
- E615, NA10 DY
- H1, ZEUS LN

Parameterization of the PDF (in terms of π^-)

- Each PDF is parameterized as $f(x_{\pi}, Q_0^2; \mathbf{a}) = \frac{N}{B(2 + \alpha, \beta)} x_{\pi}^{\alpha} (1 x_{\pi})^{\beta}$
- We equate the valence distributions: $\bar{u}_v^{\pi-} = d_v^{\pi-}$
- We equate the light sea distributions: $u^{\pi -} = \bar{d}^{\pi -} = u_s^{\pi -} = d_s^{\pi -} = s = \bar{s}$
- Parameters are reduced by the quark sum rule and momentum sum rule

Quark sum rule
$$\int_0^1 dx_\pi q_v^\pi = 1$$

Momentum Sum Rule $\int_0^1 dx_\pi x_\pi (2q_v^\pi + 6q_s^\pi + g^\pi) = 1$

Monte Carlo

• Using Bayesian statistics, we describe the probability

 $\mathcal{P}(\mathbf{a}|\text{data}) \propto \mathcal{L}(\text{data}|\mathbf{a})\pi(\mathbf{a})$

• We quantify the expectation value and variance of our observable \mathcal{O} as a function of the parameter set a_i

$$E[\mathcal{O}] = \frac{1}{N} \sum_{i} \mathcal{O}(\mathbf{a}_i)$$

$$V[\mathcal{O}] = \frac{1}{N} \sum_{i} \left[\mathcal{O}(\mathbf{a}_{i}) - E[\mathcal{O}] \right]^{2}$$

Multi-Step Strategy

- Fitting PDFs to many types of observables all at once is time consuming and slows the fit
- We start with many replicas with flat priors to fit to one observable, the π^-W DY data
- The posteriors from that fit are used as the priors for the next fit, which includes the LN data

Results

Single Fit to DY

- Apply kinematic cuts of $0 < x_F < 0.8$ and $4.16 < Q < 7.5~{\rm GeV}$ to avoid mesonic resonances
- Fit to only E615 data and achieve a χ^2 /npts of 93.14/55

Single Fit to DY and LN

- Include the H1 dataset from the LN experiments
- The H1 dataset has χ^2 /npts=18.95/58, and the E615 data has χ^2 /npts=84.12/55

Data and Theory Agreement

Show the data divided by the theory and see good agreement

Drell-Yan E615 data

Leading Neutron H1 data

Comparison to JAM18 Pion PDFs

- Available from <u>https://github.com/Jefferson</u> <u>Lab/jam18pion</u>
- Bands are without resummation, and dashed lines are latest fit with resummation
- A softer fall off at high x in resummation fit
- Sea is more suppressed than fixed order

Momentum Fraction Comparisons

• We can calculate the momentum fractions in comparison with the JAM18 PDF analysis

	JAM18 Pions	Resummation Single Fit
$\langle x_{\pi} \rangle_{val}$	0.54 ± 0.01	0.52
$\langle x_{\pi} \rangle_{sea}$	0.16 ± 0.02	0.022
$\langle x_{\pi} \rangle_{glu}$	0.30 ± 0.02	0.46

• The sea is *much* lower, the gluon is considerably higher

Challenges

- A χ^2 penalty had to be placed in order to avoid a fit with negative sea
- Fits show that the sea is effectively 0 in the DY region
- Because of the lack of data, there is a void in the constraints on the sea and the gluon at large x_π
- Because there are three unknown functions and only DY, LN, and Q^2 evolution as observables, we cannot validate universality of PDFs
- More precision data is needed

Conclusions

Next Steps

- Will include the NA10 DY data and the ZEUS data
- Do Monte Carlo analysis to quantify uncertainties
- Investigate different resummation prescriptions and approximations such as Borel prescription and Double Mellin transformations

Summary and Conclusions

- Soft gluon resummation allows us to sum the large logarithms that could potentially spoil perturbation at larger orders of α_S
- Fits done with resummation indicate a softer fall off at high- x_{π}
- Resummation is still a work in progress
- More data with large p_T will be sensitive to large- x_π PDFs

Backup Slides

- One pion exchange occurs when x_L is near 1
- When t is very small, exchanged pion is almost onshell

Leading Neutron (LN)

$$f_{\pi N}(y) = \frac{g_A^2 M^2}{(4\pi f_\pi)^2} \int dk_\perp^2 \frac{y[k_\perp^2 + y^2 M^2]}{x_L^2 D_{\pi N}^2} |\mathcal{F}|^2$$

Where
$$y = k^+/p^+ = x/x_{\pi}$$
,
 $g_A = 1.267$, $f_{\pi} = 93$ MeV

$$D_{\pi N} \equiv t - m_{\pi}^2 = -\frac{1}{1 - y} [k_{\perp}^2 + y^2 M^2 + (1 - y)m_{\pi}^2]$$

$$\mathcal{F} = \begin{cases} (i) \exp\left((M^2 - s)/\Lambda^2\right) & s \text{-dep. exponential} \\ (ii) \exp\left(D_{\pi N}/\Lambda^2\right) & t \text{-dep. exponential} \\ (iii) (\Lambda^2 - m_{\pi}^2)/(\Lambda^2 - t) & t \text{-dep. monopole} \\ (iv) \ \bar{x}_L^{-\alpha_{\pi}(t)} \exp\left(D_{\pi N}/\Lambda^2\right) & \text{Regge} \\ (v) \ \left[1 - D_{\pi N}^2/(\Lambda^2 - t)^2\right]^{1/2} & \text{Pauli-Villars} \end{cases}$$

UV regulators used in the literature

High x_L

- At low t, the neutron carries the majority of the longitudinal momentum of the proton, x_L
- In this region, we can guarantee that a proton has split into a pion and a neutron (as opposed to another particle)

Setting resummation up

 Because of the Eikonal approximation, in the soft limit, matrix elements of large numbers of emitted gluons can be factorized as such:

$$\mathcal{M}_n(z_1,\ldots,z_n) \stackrel{\text{soft}}{\simeq} \frac{1}{n!} \prod_{i=1}^n \mathcal{M}_1(z_i)$$

• Even though the amplitudes factorize in *z*-space in that way, the phase space does not because of the presence of a delta function for conservation of momentum

$$\delta(z-z_1z_2...z_n).$$

Setting resummation up

• In Mellin space, however, we do have factorization of the phase space,

$$\int_0^1 dz z^{N-1} \delta(z - z_1 z_2 \dots z_n) = z_1^{N-1} z_2^{N-1} \dots z_n^{N-1}$$

• So for hard kernels, the *n*th emission is written as:

$$C^{(n)}(N) \stackrel{\text{soft}}{\simeq} \frac{1}{n!} \left[C^{(1)}_{\text{soft}}(N) \right]^n$$

• Where $C_{\text{soft}}^1(N)$ is the hard kernel for one soft gluon emitted from the quark line

Resummation Calculation

• We need to calculate the following

$$\alpha_S C_{\text{soft}}^{(1)}(N) = 2 \frac{C_F}{\pi} \int_0^1 dz \frac{z^{N-1} - 1}{1 - z} \int_{Q^2}^{(1-z)^2 Q^2} \frac{dk_\perp^2}{k_\perp^2} \alpha_S(k_\perp^2)$$

• If α_S is a constant, the dz integrand returns the Mellin transform of $\left(\frac{\log(1-z)^2}{1-z}\right)_+$

Resummation Calculation

• Looking at the terms of the LL

$$h^{(1)}(\lambda) = \frac{A_q^{(1)}}{2\pi b_0 \lambda} [2\lambda + (1 - 2\lambda)\ln\left(1 - 2\lambda\right)]$$

 $\lambda \sim b_0 \alpha_S \ln N$

- In blue, we see a potential problem, *i.e.* when the argument of the log is 0: $N_L = \exp\left(1/2\alpha_S b_0\right)$
- This describes the Landau pole, which must be handled (ambiguity on how to do this – why there are multiple prescriptions!)

Minimal Prescription

• Avoid the Landau pole by enclosing the Mellin contour to the left of the Landau pole but to the right of the normal right-most pole

Bayesian Statistics

• The probability of the parameter set \vec{a} given the data is

$$\mathcal{P}(\vec{a}|\text{data}) = \frac{1}{Z}\mathcal{L}(\text{data}|\vec{a})\pi(\vec{a})$$

• Where Z is the Bayesian evidence, π is the Bayesian priors, and the likelihood function is

$$\mathcal{L}(ext{data}|ec{a}) = \exp\left(-rac{1}{2}\chi^2(ec{a})
ight)$$

Bayesian Statistics

• The χ^2 function is

$$\chi_{\text{expt}}^{2}(\vec{a}) = \sum_{i} \frac{(D_{i} + S_{i} - T_{i}(\vec{a})/N)^{2}}{\sum_{j} (\alpha_{i,j})^{2}}$$

• *D* is each data point, *S* is the systematic shift associated with correlated uncertainties, $T(\vec{a})$ is the theory calculation, based on the parameter set, *N* is the overall normalization for the experiment, and α are the uncorrelated statistical uncertainties

Benefit of high- p_T data on large x_π

• In the p_T -dependent cross section, must integrate over momentum fraction

- Where x_a^{\min} grows as p_T grows
- Integrating over a smaller region of high x will allow PDFs to be more sensitive to the data in that region