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Introduction/Motivation
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Pions
•Pion is the Goldstone boson 

associated with chiral symmetry 
breaking
• Lightest hadron as !!

""
≪ 1 and 

dictates the nature of hadronic 
interactions at low energies
•Simultaneously a 𝑞$𝑞 bound state

3



Theoretical Interest
•Behavior of PDF as 𝑥! → 1 (v!~ 1 − 𝑥! "#) has 
theoretical interest
•Active debate as to whether 𝛽 = 1 or 1/2
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Theoretical Interest
•Recent lattice calculations as well as 
phenomenologically determined valence quark 
PDFs using threshold resummation indicate    
𝛽 = 1 as opposed to fixed order (𝛽 = 1/2)
•Our analysis with threshold resummation will 
have impact on this question
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Recent Pion Phenomenology

• Recent (M. Aicher, et al, 2010) pion fit 
to DY data
• Fit uses soft gluon resummation
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• Recent (I. Novikov, et al, 2020, xFitter) 
pion fit to DY and prompt photon data
• Fit uses NLO in 𝛼!

𝑣!~ 1 − 𝑥 "
𝑣!~(1 − 𝑥)



JAM 18 Pion PDFs

• Valence, sea, and 
gluon distributions 
were extracted in 
an NLO analysis
• Drell-Yan (DY) only

fit then include the
Leading Neutron 
(LN)
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JAM 18 Momentum Fractions

• We also compute the
momentum fractions 
for each flavor
• Large difference in in 

the gluon and sea ⟨𝑥!⟩
from a DY to a DY+LN 
analysis
• Gluon carries ~30% of 

the momentum 
fraction at the initial 
scale
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Observables
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Drell-Yan (DY)
𝜋!

𝐴

1010



DY Observable and 𝑥!
• Observables in 𝜋!𝑊 DY experiments such as E615 and NA10 are

• It’s important to note that while 𝑥" is measured, the parton momentum 
fraction is NOT
• The relation to parton momentum fraction 𝑥" = 𝑥#$ − 𝑥%$ only holds at 

leading order, where 𝑥#,%$ = 𝜏𝑒±(, where 𝜏 = )!

*
and 𝑌 is the rapidity

• In an NLO analysis, interpretation cannot remain
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Leading Neutron (LN)
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Threshold Resummation in 
Drell-Yan
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Soft Gluon Resummation

• The goal is to sum the contributions of the soft gluon emissions 
from the quark line to all orders of 𝛼"
• Can perturbatively calculate these emissions to all orders of 𝛼"
• Here, 𝑧# near 1
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Exponentiation in Mellin space

• The matrix elements of emitted soft gluons that carry large 
logarithms are factorized in the Eikonal approximation
• Phase space only factorizes in Mellin space
• Summing over all orders of 𝛼" leads to exponentiation of the Mellin

space coefficients
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Full Hard Kernel to Calculate

Fixed order Kernel
Already have calculated this at NLO!

Resummation Kernel.
Calculate such as Leading Log, 
or Next-to-Leading Log Matching coefficients

Need to subtract in 
order to avoid double 
counting
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Next-to-Leading + Next-to-Leading Logarithm 
Order Calculation

LL NLL … NpLL

LO 1 -- … --

NLO 𝛼$ log 𝑁 % 𝛼" log(𝑁) … --

NNLO 𝛼"% log 𝑁 & 𝛼$% log 𝑁 % , log 𝑁 ' … --

… … … … …
NkLO 𝛼"( log 𝑁 %( 𝛼"( log 𝑁 %()* , log 𝑁 %()% … 𝛼"( log 𝑁 %()%+ +⋯17

An NLO calculation 
gathers the 𝒪(𝛼#)
terms 



Next-to-Leading + Next-to-Leading Logarithm 
Order Calculation

LL NLL … NpLL

LO 1 -- … --

NLO 𝛼$ log 𝑁 % 𝛼" log(𝑁) … --

NNLO 𝛼"% log 𝑁 & 𝛼$% log 𝑁 % , log 𝑁 ' … --

… … … … …
NkLO 𝛼"( log 𝑁 %( 𝛼"( log 𝑁 %()* , log 𝑁 %()% … 𝛼"( log 𝑁 %()%+ +⋯18

Add the columns to 
the rows



Next-to-Leading + Next-to-Leading Logarithm 
Order Calculation

LL NLL … NpLL

LO 1 -- … --

NLO 𝛼$ log 𝑁 % 𝛼" log(𝑁) … --

NNLO 𝛼"% log 𝑁 & 𝛼$% log 𝑁 % , log 𝑁 ' … --

… … … … …
NkLO 𝛼"( log 𝑁 %( 𝛼"( log 𝑁 %()* , log 𝑁 %()% … 𝛼"( log 𝑁 %()%+ +⋯19

Make sure only counted once!
- Subtract the matching



Drell-Yan Rapidity Distribution

• Formulate resummation in Mellin space for 𝑄%(or 𝜏) distribution
• For rapidity distribution, introduce a Fourier transform

• To compare with data, must invert back to momentum fraction and 
rapidity space

Non-trivial!  But beyond the scope of this talk
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Extraction Procedure
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Kinematic Coverage

• We want to be able to fit 
simultaneously the Drell-
Yan and Leading Neutron 
data
• We can shape the pion

PDFs at both high- and
low-𝑥! with both datasets
• E615, NA10 – DY
• H1, ZEUS – LN
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Kinematic Coverage

• We want to be able to fit 
simultaneously the Drell-
Yan and Leading Neutron 
data
• We can shape the pion

PDFs at both high- and
low-𝑥! with both datasets
• E615, NA10 – DY
• H1, ZEUS – LN
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Very little 
kinematic 
overlap!



Parameterization of the PDF (in terms of 𝜋")

• Each PDF is parameterized as

• We equate the valence distributions: 2𝑢,!) = 𝑑,!)

• We equate the light sea distributions: 𝑢!) = 𝑑̅!) = 𝑢$!) = 𝑑$!) = 𝑠 = 𝑠̅
• Parameters are reduced by the quark sum rule and momentum sum rule

𝑄$" = 𝑚%
"

Vector of parameters

Quark sum rule

Momentum Sum Rule
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Monte Carlo
• Using Bayesian statistics, we describe the probability

• We quantify the expectation value and variance of our observable 𝒪 as a function 
of the parameter set 𝒂.
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Multi-Step Strategy

• Fitting PDFs to many types of observables all at once is time 
consuming and slows the fit
• We start with many replicas with flat priors to fit to one observable, 

the 𝜋)𝑊 DY data
• The posteriors from that fit are used as the priors for the next fit, 

which includes the LN data
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Results
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Single Fit to DY
• Apply kinematic cuts of 0 < 𝑥- < 0.8 and 4.16 < 𝑄 < 7.5 GeV to 

avoid mesonic resonances
• Fit to only E615 data and achieve a 𝜒%/npts of 93.14/55
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Here, 𝑄" = 10 GeV2

Log Scale Linear Scale



Single Fit to DY and LN

• Include the H1 dataset from the LN experiments
• The H1 dataset has 𝜒%/npts=18.95/58, and the E615 data has 
𝜒%/npts=84.12/55
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Data and Theory Agreement

• Show the data divided by the theory and see good agreement
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Drell-Yan E615 data

Leading Neutron H1 data



Comparison to JAM18 Pion PDFs

• Available from 
https://github.com/Jefferson
Lab/jam18pion
• Bands are without 

resummation, and dashed 
lines are latest fit with 
resummation
• A softer fall off at high 𝑥 in 

resummation fit
• Sea is more suppressed than 

fixed order
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Momentum Fraction Comparisons
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• We can calculate the momentum fractions in comparison with the 
JAM18 PDF analysis

• The sea is much lower, the gluon is considerably higher

JAM18 Pions Resummation Single Fit

𝑥! &'( 0.54 ± 0.01 0.52

𝑥! )*' 0.16 ± 0.02 0.022

𝑥! +(, 0.30 ± 0.02 0.46



Challenges

• A 𝜒% penalty had to be placed in order to avoid a fit with negative sea
• Fits show that the sea is effectively 0 in the DY region
• Because of the lack of data, there is a void in the constraints on the

sea and the gluon at large 𝑥!
• Because there are three unknown functions and only DY, LN, and 𝑄%

evolution as observables, we cannot validate universality of PDFs
• More precision data is needed
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Conclusions
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Next Steps

• Will include the NA10 DY data and the ZEUS data
• Do Monte Carlo analysis to quantify uncertainties
• Investigate different resummation prescriptions and approximations 

such as Borel prescription and Double Mellin transformations
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Summary and Conclusions

• Soft gluon resummation allows us to sum the large logarithms that
could potentially spoil perturbation at larger orders of 𝛼"
• Fits done with resummation indicate a softer fall off at high-𝑥!
• Resummation is still a work in progress
• More data with large 𝑝. will be sensitive to large-𝑥! PDFs
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Backup Slides
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Leading Neutron (LN)

• One pion exchange occurs when 𝑥$ is near 1
• When 𝑡 is very small,  exchanged pion is almost on-

shell

𝑥*

𝑦
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Leading Neutron (LN)
Splitting Function:

Where 𝑦 = 𝑘!/𝑝! = 𝑥/𝑥", 
𝑔# = 1.267, 𝑓" = 93MeV

UV regulators 
used in the 
literature
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High 𝑥2
• At low 𝑡, the neutron carries the majority of the longitudinal 

momentum of the proton, 𝑥/
• In this region, we can guarantee that a proton has split into a pion 

and a neutron (as opposed to another particle) 



Setting resummation up

• Because of the Eikonal approximation, in the soft limit, matrix 
elements of large numbers of emitted gluons can be factorized as 
such:

• Even though the amplitudes factorize in 𝑧-space in that way, the 
phase space does not because of the presence of a delta function for 
conservation of momentum
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Setting resummation up

• In Mellin space, however, we do have factorization of the phase space,

• So for hard kernels, the 𝑛th emission is written as: 

• Where 𝐶soft# (𝑁) is the hard kernel for one soft gluon emitted from the 
quark line
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Resummation Calculation
•We need to calculate the following

• If 𝛼% is a constant, the 𝑑𝑧 integrand returns the 

Mellin transform of 
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Resummation Calculation

• Looking at the terms of the LL

• In blue, we see a potential problem, i.e. when the argument of the log 
is 0: 

• This describes the Landau pole, which must be handled (ambiguity on 
how to do this – why there are multiple prescriptions!) 44



Minimal Prescription

• Avoid the Landau pole by enclosing the Mellin contour to the left of 
the Landau pole but to the right of the normal right-most pole
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Bayesian Statistics

• The probability of the parameter set 𝑎⃗ given the data is

• Where 𝑍 is the Bayesian evidence, 𝜋 is the Bayesian priors, and the 
likelihood function is  



Bayesian Statistics

• The 𝜒% function is

• 𝐷 is each data point, 𝑆 is the systematic shift associated with 
correlated uncertainties, 𝑇(𝑎⃗) is the theory calculation, based on the 
parameter set, 𝑁 is the overall normalization for the experiment, and 
𝛼 are the uncorrelated statistical uncertainties



Benefit of high-𝑝3 data on large 𝑥4
• In the 𝑝.-dependent cross section, must integrate over momentum 

fraction

• Where 𝑥0123 grows as 𝑝. grows
• Integrating over a smaller region of high 𝑥 will allow PDFs to be more 

sensitive to the data in that region
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