

Pion and Kaon Distribution from Lattice QCD

Outlíne

§ Brief LaMET Introduction with PDF Examples § Pion and Kaon PDFs and Pion GPD

H. Lin et al., 2003.14128; J. Chen, HL, J. Zhang, 1904.12376

§ Pion and Kaon Distribution Amplitudes

R. Zhang et al.(MSULat), 2005.13955

Thanks to MILC collaboration for sharing 2+1+1 HISQ lattices

PDFs on the Lattice

§ Traditional lattice calculations rely on operator product expansion, only provide moments

§ True distribution can only be recovered with all moments

PDFs on the Lattice

§ Limited to the lowest few moments

For higher moments, all ops mix with lower-dimension ops
No practical proposal yet to overcome this problem **Selative error grows in higher moments**Calculation would be costly
Cannot separate valence contrib. from sea

PDFs on the Lattice

- § Limited to the lowest few moments > For higher moments, all ops mix with lower-dimension ops >> No practical proposal yet to overcome this problem § Relative error grows in higher moments Calculation would be costly Cannot separate valence contrib. from sea § New Strategy: Xiangdong Ji, PRL 111, 039103 (2013); § Adopt lightcone description for PDFs § Calculate finite-boost quark distribution xI
 - ➢ In P_z → ∞ limit, parton distribution recovered
 ➢ For finite P_z, corrections are applied through effective theory
 - § Feasible with today's resources!

Large-Momentum Effective Theory for PDFs ^{X. Ji, PRL. 111, 262002 (2013)} 1) Calculate meson matrix elements on the lattice

Thanks to MILC collaboration for sharing their 2+1+1 HISQ lattices

See the talk by David Richard (Wednesday) for a nice overview of other lattice x-dependent methods

Huey-Wen Lin — Pion and Kaon Workshop @ CFNS

Large-Momentum Effective Theory for PDFs X. Ji, PRL. 111, 262002 (2013) 1) Calculate meson matrix elements on the lattice

Thanks to MILC collaboration for sharing their 2+1+1 HISQ lattices

 $\prod_{u \in V} \frac{\text{MICHIGAN STATE}}{u + v + v + v + s + t + y}$

Huey-Wen Lin — Pion and Kaon Workshop @ CFNS

Large-Momentum Effective Theory (LaMET) X. Ji, PRL. 111, 262002 (2013) 1) Calculate meson matrix elements on the lattice

(*z* dependence)

Systematics: stability in extracting matrix elements

Kaon matrix element at $M_{\pi} \approx 220$ MeV, $a \approx 0.12$ fm

Large-Momentum Effective Theory for PDFs ^{X. Ji, PRL. 111, 262002 (2013)} 1) Calculate meson matrix elements on the lattice

Thanks to MILC collaboration for sharing their 2+1+1 HISQ lattices § Systematic uncertainty (nonzero *a*, finite *L*, etc.) \Rightarrow Excited-state removal; nonperturbative renorm. \Rightarrow Extrapolation to the continuum limit $(m \Rightarrow m^{\text{phys}}, L \Rightarrow \infty, a \Rightarrow 0)$

 $(m_{\pi} \rightarrow m_{\pi}^{\text{phys}}, L \rightarrow \infty, a \rightarrow 0)$

Large-Momentum Effective Theory (LaMET) X. Ji, PRL. 111, 262002 (2013) 1) Calculate meson matrix elements on the lattice

(z dependence)

2) Compute quasi-distribution via

$$\tilde{q}(x,\mu,P_z) = \int \frac{dz}{4\pi} e^{-izk_z} \left\langle P \middle| \bar{\psi}(z) \Gamma \exp\left[-ig \int_0^z dz' A_z(z') \right] \psi(0) \middle| P \right\rangle$$

$$x = k_z/P_z \quad \text{lattice } z \text{ coordinate} \quad \text{product of lattice gauge links}$$

$$hadron \text{ momentum } P_\mu = \{P_t, 0, 0, P_z\}$$

Large-Momentum Effective Theory (LaMET) ^{X. Ji, PRL. 111, 262002 (2013)} 1) Calculate meson matrix elements on the lattice (*z* dependence)

2) Compute quasi-distribution via

$$\tilde{q}(x,\mu,P_z) = \int \frac{dz}{4\pi} e^{-izk_z} \left\langle P \left| \bar{\psi}(z) \Gamma \exp\left[-ig \int_0^z dz' A_z(z') \right] \psi(0) \right| P \right\rangle$$

3) Recover true distribution (take $P_z \to \infty$ limit) $\tilde{q}(x,\mu,P_z) = \int_{-\infty}^{\infty} \frac{dy}{|y|} Z\left(\frac{x}{y},\frac{\mu}{P_z}\right) q(y,\mu) + O\left(\frac{M_N^2}{P_z^2}\right) + \left(\frac{\Lambda_{\rm QCD}^2}{P_z^2}\right)$

X. Xiong et al., 1310.7471; J.-W. Chen et al, 1603.06664

§ Matching is a crucial step in recovering the true lightcone distribution

New Results on Meson Structure

+ HWL

Rui Zhang (MSU)

Zhouyou Fan Jiunn-Wei Chen Jian-Hui Zhang (NTU) (MSU)

(BNU)

H. Lin et al., 2003.14128

5

Huey-Wen Lin — Pion and Kaon Workshop @ CFNS

Píon Valence-Quark PDF

§ Single-ensemble calculation

> Non-physical pion mass, single lattice spacing, single volume

Huey-Wen Lin — Pion and Kaon Workshop @ CFNS

Píon Valence-Quark PDF

§ Results from JLab-W&M/LCS method

 $\gg M_{\pi} = 278$, 358, 413 MeV with a = 0.094, 0.127 fm

 \gg Extrapolated to physical limit (shown as blue band)

 \sim Renormalized Z_{VA} in RI/MOM, matched to MS, run to 27 GeV²

R. S. Sufian, et al, 2001.04960

Píon Valence-Quark PDF

§ Results from MSULat/quasi-PDF method

 $\gg M_{\pi} = 220, 310, 790$ MeV with a = 0.06, 0.12 fm

- Extrapolated to physical limit (shown as pink/green band)
- \sim Renormalized in RI/MOM, matched to $\overline{\text{MS}}$, run to 27 GeV²

Píon Gluon PDF

§ Pioneering first glimpse into pion gluon PDF using LaMET

 Promising results using coordinate-space comparison, but signal does not go far in z

Fan. et al, Phys. Rev. Lett. 121, 242001 (2018)
➢ Lattice calculation #1: overlap/2+1DWF, 0.16 fm, 340-MeV sea pion mass

➢ Lattice calculation #2: clover/2+1+1 HISQ, <u>0.15</u>fm, 310-MeV sea pion mass with increased momenta (normalized by $\langle x \rangle_g$)

First Lattice GPDs

§ Pioneering first glimpse into pion GPD using LaMET Lattice details: clover/HISQ, 0.12fm, 310-MeV pion mass

 $P_z \approx 1.3, 1.6 \text{ GeV}$

J. Chen, HL, J. Zhang, 1904.12376

$$H_{q}^{\pi}(x,\xi,t,\mu) = \int \frac{d\eta^{-}}{4\pi} e^{-ix\eta^{-}p^{+}} \left(\pi(P + \Delta/2) \left| \bar{q} \left(\frac{\eta^{-}}{2} \right) \gamma^{+} \Gamma \left(\frac{\eta^{-}}{2}, -\frac{\eta^{-}}{2} \right) q \left(-\frac{\eta^{-}}{2} \right) \right| \pi(P - \Delta/2) \right)$$

$$= \int \frac{10}{2} \left[\frac{10}{10} \left[\frac{1}{2} \right] \frac{1}{4\pi} e^{-ix\eta^{-}p^{+}} \left(\pi(P + \Delta/2) \right| \bar{q} \left(\frac{\eta^{-}}{2} \right) \gamma^{+} \Gamma \left(\frac{\eta^{-}}{2}, -\frac{\eta^{-}}{2} \right) q \left(-\frac{\eta^{-}}{2} \right) \right| \pi(P - \Delta/2) \right)$$

$$= \int \frac{10}{2} \left[\frac{10}{10} \left[\frac{1}{2} \right] \frac{1}{4\pi} e^{-ix\eta^{-}p^{+}} \left(\pi(P + \Delta/2) \right] \bar{q} \left(\frac{\eta^{-}}{2} \right) \gamma^{+} \Gamma \left(\frac{\eta^{-}}{2}, -\frac{\eta^{-}}{2} \right) q \left(-\frac{\eta^{-}}{2} \right) \right| \pi(P - \Delta/2) \right)$$

$$= \int \frac{10}{2} \left[\frac{10}{10} \left[\frac{1}{4\pi} e^{-ix\eta^{-}p^{+}} \left(\frac{\pi(P + \Delta/2)}{\pi(P + \Delta/2)} \right] \frac{1}{\pi(P + \Delta/2)} \right] \frac{10}{\pi(P - \Delta/2)} \left[\frac{10}{4\pi} \left(\frac{\pi^{-}}{2} \right) \frac{1}{\pi(P - \Delta/2)} \right] \frac{10}{\pi(P - \Delta/2)} \frac{1}{\pi(P - \Delta/2)} \frac{1}{\pi(P$$

§ The first study of x-dependent kaon PDF on the lattice $\approx M_{\pi} \in \{220, 310, 690 \ (\eta_s)\}$ MeV $\approx a = 0.06, 0.12$ fm $\approx M_{\pi}^{\min} L = 5.5$ $\approx t_{sep} = 0.72-1.08$ fm

§ We renormalized in RI/MOM scheme $\approx \mu_R = 2.4 \text{ GeV}$ Systematics: Continuum extrapolation $a \rightarrow 0$

§ Mild dependence on the lattice spacing and pion masses

§ We renormalized in RI/MOM scheme

 $\gg \mu_R = 2.4 \text{ GeV}$

> Extrapolate to physical limit (shown as pink band)

§ Combine with matching to yield MS results (plot by Rui Zhang)

§ LaMET steps 2 & 3: Extracting the lightcone distribution from the physical-limit lattice matrix elements

H. Lin et al. (MSULat), 2003.14128

New Results on Meson DA

+ HWL

Rui Zhang (MSU)

Carson Honkala Jiunn-Wei Chen (MSU)

(NTU)

Huey-Wen Lin — Pion and Kaon Workshop @ CFNS

§ The first continuum-limit study of *x*-dependent meson DA on the lattice $\approx M_{\pi} \in \{310, 690 \ (\eta_s)\}$ MeV $\approx a \in \{0.06, 0.09, 0.12\}$ fm $\approx M_{\pi}^{\min} L = 4.5$

 $C_{M}^{\text{DA}}(z,P,t) = \left\langle 0 \left| \int d^{3}y \, e^{i \, \vec{P} \cdot \vec{y}} \bar{\psi}_{1}(\vec{y},t) \gamma_{z} \gamma_{5} U(\vec{y},\vec{y}+z\,\hat{z}) \psi_{2}(\vec{y}+z\,\hat{z},t) \bar{\psi}_{2}(0,0) \gamma_{5} \psi_{1}(0,0) \right| 0 \right\rangle$

§ The first continuum-limit study of *x*-dependent meson DA on the lattice

Systematics: stability in extracting matrix elements

a = 0.06 fm, 310-MeV ensemble example

§ The first continuum-limit study of x-dependent meson DA on the lattice

Systematics: Continuum extrapolation $a \rightarrow 0$

§ The first continuum-limit study of x-dependent meson DA on the lattice

Systematics: Continuum extrapolation $m_{\pi} \rightarrow m_{\pi}^{\text{phys}}$

 § Extract the DA distribution from the physical-continuum matrix elements
 R. Zhang et al. (MSULat), 2005.13955

$$h(z,\mu^{R},p_{z}^{R},P_{z}) = \int_{-\infty}^{\infty} dx \, e^{i(1-x)zP_{z}} \int_{0}^{1} dy \, C\left(x,y,\left(\frac{\mu^{R}}{p_{z}^{R}}\right)^{2},\frac{P_{z}}{\mu^{R}},\frac{P_{z}}{p_{z}^{R}}\right) f_{m,n}(y)$$
$$f_{m,n}(x) = \frac{1}{B(m+1,n+1)} x^{m}(1-x)^{n} \qquad B(m+1,n+1) = \int_{0}^{1} dx \, x^{m}(1-x)^{n}$$

 $\gg 1^{st}$ method: fit to the functional form

§ E Machine Learning - A Promising Solution? n Machine learning models are effective in extracting complicated dependence of the output data on input data. h(z,Hidden Layer 2 Hidden Layer 1 Input Layer Ouput ð $\operatorname{Re}[h(z)]$, $\operatorname{Im}[h(z)]$ Layer **Pion** $\phi(\mathbf{x})$ $Re[h_{\pi}^{R}(zP_{z})]$ Output [N,3] Input W_1 W_o [N,4] [4,5] f_1 [7,3] W_2 Slide by Rui Zhang [5,7] f_2

Huey-Wen Lin — Pion and Kaon Workshop @ CFNS

12

955

Machine Learning - preliminary attempts

Slide by Rui Zhang

Training: 10,000 Pseudo-data from functional form $x^a(1-x)^b/B[a+1, b+1]$ with a, b > 0. With random relative noise added.

Extrapolation test: Generate h(z) from $f(x) = Nsin^a(\pi x)$ with a = 0.5, 1, 2. Add 1000 random noise $\sigma(z) = 0.1e^{0.1z}h(z)$ to h(z). Estimate mean and error of the prediction on 1000 samples.

 § Extract the DA distribution from the physical-continuum matrix elements
 R. Zhang et al. (MSULat), 2005.13955

$$h(z,\mu^R,p_z^R,P_z) = \int_{-\infty}^{\infty} dx \int_0^1 dy \ C\left(x,y,\left(\frac{\mu^R}{p_z^R}\right)^2,\frac{P_z}{\mu^R},\frac{P_z}{p_z^R}\right) f_{m,n}(y) e^{i(1-x)zP_z}$$

 \gg 2nd method: use machine learning to determine *f*

 § Extract the DA distribution from the physical-continuum matrix elements
 R. Zhang et al. (MSULat), 2005.13955

$$h(z,\mu^{R},p_{Z}^{R},P_{Z}) = \int_{-\infty}^{\infty} dx \int_{0}^{1} dy C\left(x,y,\left(\frac{\mu^{R}}{p_{Z}^{R}}\right)^{2},\frac{P_{Z}}{\mu^{R}},\frac{P_{Z}}{p_{Z}^{R}}\right) f_{m,n}(y)e^{i(1-x)zP_{Z}}$$
Pion Kaon

Huey-Wen Lin — Pion and Kaon Workshop @ CFNS

§ Extract the DA distribution from the physical-continuum matrix elements
R. Zhang et al. (MSULat), 2005.13955

RQCD'19: G. S. Bali et al., J HEP 08, 065 (2019); DSE'14:

Summary & Outlook

Exciting time for studying meson structure on the lattice

- § Overcoming longstanding obstacle to full *x*-distribution
- $\boldsymbol{\succcurlyeq}$ Most importantly, this can be done with today's computer
- § Progress made in pion and kaon structure
- First look at kaon PDF, and pion GPD
 Continuum-limit pion and kaon DAs
- § Future improvement

- > Lighter (or physical) pion-mass and larger momentum
- Explore more ways to reduce the parameter-dependence of distribution functions

Thanks to MILC collaboration for sharing lattices and NSF CAREER Award under grant PHY 1653405

Huey-Wen Lin — Pion and Kaon Workshop @ CFNS

First Lattice Strange PDF

§ Large uncertainties in global PDFs

§ Results by MSULat/quasi-PDF method

Systematics Study

§ First finite-volume study in quasi-PDFs \approx Clover on 2+1+1 HISQ, $M_{\pi} \approx 220$ MeV, $a \approx 0.12$ fm $\approx M_{\pi}L \approx 3.3, 4.4, 5.5, P_z \approx 1.3$ GeV

Huey-Wen Lin — Pion and Kaon Workshop @ CFNS

Superfine Lattice Spacing

§ Approaching continuum limit

➢ Important for all *x*-dependent methods Large momentum required to reach *x* < 0.1 reliably $(aP_z)^n$ systematics should be small

Machine-Learning Prediction

$$\langle C_{\text{pred,BC}} \rangle = \langle C_{\text{pred}} \rangle_{\text{ul}} + \langle C_{\text{BC}} - C_{\text{pred}} \rangle_{\text{BC}}$$

Machine-Learning Prediction

R. Zhang et al (MSULat), Phys. Rev. D 101, 034516 (2020)

§ Multiple quasi-PDF data sets studied (meson DA, gluon/kaon PDFs)
& Example kaon PDF at 220-MeV ensemble

Huey-Wen Lin — Pion and Kaon Workshop @ CFNS

FIG. 13. Solid green curve – kaon's valence \bar{s} -quark distribution defined at ζ_H by Eq. (45) and Table III–middle, evolved $\zeta_H \rightarrow \zeta_5$ using the procedure explained in Sec. IV A, including the splitting function modification in Eq. (58a) with $\sigma_{ss} = 1$. Dot-dashed blue curve – kaon's valence *u*-quark distribution, unchanged from Fig. 11. Dashed black curve – central \bar{s} -quark distribution from Fig. 11, *i.e.* obtained with mass-independent evolution. (The bands bracketing the central DFs reflect the uncertainty in the $k^2 = 0$ value of the PI charge, Fig. 1.)

§ Extract the DA distribution from the physical-continuum matrix elements

$$h(z,\mu^{R},p_{z}^{R},P_{z}) = \int_{-\infty}^{\infty} dx \int_{0}^{1} dy C\left(x,y,\left(\frac{\mu^{R}}{p_{z}^{R}}\right)^{2},\frac{P_{z}}{\mu^{R}},\frac{P_{z}}{p_{z}^{R}}\right) f_{m,n}(y)e^{i(1-x)zP_{z}}$$

References	Sea quarks	Valence quarks	$\langle \xi^2 \rangle_{\pi}$	$\langle \xi^2 \rangle_K$	Renormalization	a (fm)	M_{π} (MeV)	$M_{\pi}L$
MSULat'20 (this work)	2+1+1f HISQ	clover	0.244(30)	0.198(16)	RI-MOM	0.06 - 0.012	310-690	4.4-10
RQCD'19 [106]	2+1f clover	clover	0.234(6)(6)	0.231(4)(6)	RI'-SMOM	0.039 - 0.086	130-420	3.6-6.4
RQCD'17 [105]	2+1f clover	clover	0.2077(43)	N/A	RI'-SMOM	0.086	222 - 420	3.9 - 5.8
RQCD'15 [104]	2f clover	clover	0.236(4)(4)	N/A	RI'-SMOM	0.06-0.08	150 - 260	3.4-4.8
RBC/UKQCD'10 [103]	2+1f DWF	DWF	0.28(1)(2)	0.26(1)(2)	RI'/MOM	0.11	330-670	4.5 - 9.2
QCDSF'07 [102]	2f clover	clover	0.260(39)	0.260(6)	RI/MOM	0.06 - 0.085	580 - 1170	4.6 - 9.6

§ Exciting! Two collaborations' results at physical pion mass \Rightarrow Boost momenta $P_z \le 1.4$ GeV \Rightarrow Study of systematics still needed

§ Exciting! Two collaborations' results at physical pion mass

§ Exciting! Two collaborations' results at physical pion mass

§ Exciting! Two collaborations' results at physical pion mass

