Pion and Kaon in Basis Light-front Quantization

Jiangshan Lan*, Hengfei Zhao*, Chandan Mondal*, Xingbo Zhao*, Shaoyang Jia †, James P. Vary†

*Institute of Modern Physics, CAS, Lanzhou, China † Iowa State University, Ames, US

Workshop on Pion and Kaon Structure Functions at the EIC 06/04/2020

<u>Outline</u>

• Basis Light-front Quantization approach

- Application to π and K
 - Leading Fock sector (based on NJL interacton)
 - With one dynamical gluon
- Summary and Future Plan

Hamiltonian Formalism

Schrödinger equation universally describes different physics : ٠ $H|\psi\rangle = E|\psi\rangle$

Nonrelativistic, few-body

nucleus

Nonrelativistic, many-body

hadron

Relativistic, many-body

Wave functions encode full information of the system ٠

Light-front Quantization

[Dirac, 1949]

Basis Light-front Quantization

- Nonperturbative eigenvalue problem $P^-|\beta\rangle = P^-_\beta|\beta\rangle$
 - *P*⁻: light-front Hamiltonian
 - $|\beta\rangle$: mass eigenstate
 - P_{β}^{-} : eigenvalue for $|\beta\rangle$
- Evaluate observables for eigenstate $O \equiv \langle \beta | \hat{O} | \beta \rangle$
- Fock sector expansion
 - Eg. $|\mathbf{\pi}\rangle = a|q\bar{q}\rangle + b|q\bar{q}g\rangle + c|q\bar{q}gg\rangle + d|q\bar{q}q\bar{q}\rangle + \dots$
- Discretized basis
 - Transverse: 2D harmonic oscillator basis: $\Phi_{n,m}^b(\vec{p}_{\perp})$.
 - Longitudinal: plane-wave basis, labeled by k.
 - Basis truncation:

$$\sum_{i} (2n_i + |m_i| + 1) \le N_{max},$$

$$\sum_{i} k_i = K.$$

 N_{max} , K are basis truncation parameters.

Large N_{max} and K: High UV cutoff & low IR cutoff

[Vary et al, 2008]

Application to π and K

PDF from BLFQ and QCD Evolution for Light Mesons

$$H_{\rm eff} = \frac{\overline{k_{\perp}^2 + m_q^2}}{x} + \frac{\overline{k_{\perp}^2 + m_{\bar{q}}^2}}{1 - x} + \kappa^4 x (1 - x) \vec{r}_{\perp}^2 - \frac{\kappa^4}{(m_q + m_{\bar{q}})^2} \partial_x (x(1 - x) \partial_x) + H_{\rm eff}^{\rm NJL}$$

PDF for the valence quark result from the light-front wave functions obtain by diagonalizing the effective Hamiltonian.

Pion PDF

Valence *u* PDF Kaon/Pion

[Lan, Mondal, Jia, Zhao, Vary, PRL122, 172001(2019)]

Agree with experimental results 8

The moments of pion valence quark PDF

$$\langle x^n \rangle = \int_0^1 dx \ x^n f_v^{\pi/K}(x,\mu^2), \ n = 1, 2, 3, 4.$$

$\langle x \rangle$ @ 4 GeV ²	Valence	Gluon	Sea
BLFQ-NJL	0.489	0.398	0.113
[Ding et. al., BSE model 2019']	0.48(3)	0.41(2)	0.11(2)

Agree with other results

[Lan, Mondal, Jia, Zhao, Vary, PRD101,034024(2020)]

Drell-Yan cross section

Agree with experimental data (FNAL E615, 326, 444, & CERN NA3, WA-039).

[Lan, Mondal, Jia, Zhao, Vary, PRD101,034024(2020)]

$$\begin{split} |\pi\rangle &= |q\bar{q}\rangle + \cdots \\ & |\pi\rangle &= a|q\bar{q}\rangle + b|q\bar{q}g\rangle + \cdots \end{split}$$

Interaction Part of Hamiltonian

$$|\pi\rangle = a |q\bar{q}\rangle + b |q\bar{q}g\rangle + \cdots$$

$$P^{-} = \frac{\vec{k_{\perp}^{2}} + m_{q}^{2}}{x} + \frac{\vec{k_{\perp}^{2}} + m_{\bar{q}}^{2}}{1 - x} + \kappa^{4} x (1 - x) \vec{r_{\perp}^{2}} - \frac{\kappa^{4}}{(m_{q} + m_{\bar{q}})^{2}} \partial_{x} (x (1 - x) \partial_{x}) + H_{\text{int}}$$

12

Pion Spectrum, DC, Radii			π^+	$\rightarrow \mu^+ \nu$ π^-	$\rightarrow \mu^- \bar{\nu}$			
$\langle r_c^2 \rangle = 6 \frac{\partial}{\partial Q^2} F(Q^2) _{Q^2 \to 0}$				$\langle 0 \bar{\Psi}(0)\gamma^+\gamma_5\Psi(0) \Psi_{\pi}(P,s)\rangle = iP^+f_P,$				
$F(Q^2) = \sum_{i} \int dx_i H(x_i, 0, Q^2)$				$\frac{f_P}{2\sqrt{2N_C}} = \int [d^3k]\Psi_2,$				
	m_{π^+} [MeV]	$m_{ ho^+}$ [MeV]	${f_{\pi^+}}$ [MeV]	${f_{ ho^+}}$ [MeV]	$\sqrt{\langle r_c^2 angle} ert_{\pi^+}$ [fm]	norm1	P	
Setl	139.50	775.26	230.1	233.8	0.747	0.639	reli	
Set II	139.5	775.2	161.3	154.7	0.489~1.31	0.522	mir	
PDG [Tanabashi, e	139.57 t al, PRD(2018)]	775.26 <u>+</u> 0.25	130.2 <u>+</u> 1.7	221 <u>+</u> 2	0.672 <u>+</u> 0.008		iary	
BLFQ-NJL [Jia, Vary, PR	139.57 2 <i>C(2018)]</i>	775.23 <u>±</u> 0.04	202.10	100.12	0.68 <u>±</u> 0.05			
Set I Set II								
$ \begin{split} N_{\max} &= 8, K_{\max} = 9, M_J = 0 \\ m_q &= 0.33 \text{ GeV}, m_g = 0.60 \text{ GeV}, \\ \kappa &= 0.77 \text{ GeV}, b = 0.49 \text{ GeV}, \\ \alpha &= 0.284, m_f = 3.38 \text{ GeV} \end{split} \qquad \begin{aligned} N_{\max} &= 12, K_{\max} = 13, M_J = 0 \\ m_q &= 0.39 \text{ GeV}, m_g = 0.56 \text{ GeV}, \\ \kappa &= 0.84 \text{ GeV}, b = 0.33 \text{ GeV}, \\ \alpha &= 0.318, m_f = 4.80 \text{ GeV} \end{split} $					= 0 V,			

PDA

Pion initial PDF

Valence close to BLFQ-NJL result at large x, more than BLFQ-NJL result at small x; we have gluon in initial PDF.

Pion PDF

Preliminary

Pion PDF

 $|\pi\rangle = a|q\bar{q}\rangle + b|q\bar{q}g\rangle + \cdots$

Preliminary

20

Pion PDF

Preliminary

Light meson in progress

Kaon Spectrum

PDA

Kaon initial PDF $|K\rangle = |u\bar{s}\rangle + \cdots$ **VS** $|K\rangle = a|u\bar{s}\rangle + b|u\bar{s}g\rangle + \cdots$

Preliminary

Kaon PDF

Kaon PDF

$$|K\rangle = |u\bar{s}\rangle + \cdots$$
 VS $|K\rangle = a|u\bar{s}\rangle + b|u\bar{s}g\rangle + \cdots$

Kaon PDF $|K\rangle = |u\bar{s}\rangle + \cdots$ **VS** $|K\rangle = a|u\bar{s}\rangle + b|u\bar{s}g\rangle + \cdots$

Preliminary

Conclusions

- Basis Light-front Quantization:
 - Nonperturbative approach to relativistic many-body bound states
- Light-front Hamiltonian \implies Wavefunction \implies Observables
 - Mass spectrum + structure
- Systematically expandable by including higher Fock sectors

$$-|\text{Baryon}\rangle = |qqq\rangle + |qqqqg\rangle + |qqqq\bar{q}\rangle + \cdots$$
$$-|\text{Meson}\rangle = |q\bar{q}\rangle + |q\bar{q}g\rangle + |q\bar{q}q\bar{q}\rangle + \cdots$$

-|Exotic hadrons $\rangle = |q\bar{q}q\bar{q}\rangle + \cdots$

Future Plans

- Meson: heavy quarkonium
 heavy-light meson

 strange meson
- Baryon: nucleon → excited nucleon → baryons with s, b, c quarks...
- Expansion in Fock sectors: $|q\bar{q}q\bar{q}\bar{q}\rangle$ in meson and $|qqqq\bar{q}\rangle$ in baryon
- Evaluation of observables: FF, PDF, DY cross section, PDA, GPD, TMD, GTMD...
- Tremendous amount of possibilities...

Thank you !

Questions/suggestions: xbzhao@impcas.ac.cn