Structure of Mesons and its impact on Baryons one

Cédric Mezrag

CEA-Saclay, Irfu/DPhN

June 4th, 2020

In collaboration with: J.M. Morgado Chavez, H. Moutarde, J.Rodriguez-Quintero

Cédric Mezrag (CEA-DPhN)

Mesons and Baryons Structure

June 4th, 2020

- 3

Zoo of hadron structure

Various matrix elements are used today to describe hadron structure from 1D to 5D

Zoo of hadron structure

Various matrix elements are used today to describe hadron structure from 1D to 5D

Cédric Mezrag (CEA-DPhN)

Mesons and Baryons Structure

June 4th, 2020 2 / 22

Generalised Parton Distributions

cea

Fourier transform of non-local matrix elements:

$$H(x,\xi,t) = \frac{1}{2} \int \frac{e^{ixP^+z^-}}{2\pi} \langle P + \frac{\Delta}{2} | \bar{\psi}^q(-\frac{z}{2})\gamma^+\psi^q(\frac{z}{2}) | P - \frac{\Delta}{2} \rangle \mathrm{d}z^- |_{z^+=0,z=0}$$

D. Müller *et al.*, Fortsch. Phy. 42 101 (1994)
 X. Ji, Phys. Rev. Lett. 78, 610 (1997)

A. Radyushkin, Phys. Lett. B380, 417 (1996)

3

- ∢ ∃ →

< □ > < 同 >

Generalised Parton Distributions

2

Fourier transform of non-local matrix elements:

$$H(x,\xi,t) = \frac{1}{2} \int \frac{e^{ixP^+z^-}}{2\pi} \langle P + \frac{\Delta}{2} | \bar{\psi}^q(-\frac{z}{2})\gamma^+\psi^q(\frac{z}{2}) | P - \frac{\Delta}{2} \rangle \mathrm{d}z^- |_{z^+=0,z=0}$$

D. Müller et al., Fortsch. Phy. 42 101 (1994) X. Ji, Phys. Rev. Lett. 78, 610 (1997)

A. Radyushkin, Phys. Lett. B380, 417 (1996)

Experimental access

GPDs can be extracted from deeply virtual exclusive processes

Cédric Mezrag (CEA-DPhN)

Mesons and Baryons Structure

- ∢ ≣ → June 4th, 2020

э

3/22

(日)

• Polynomiality Property:

$$\int_{-1}^{1} \mathrm{d}x \; x^{m} H^{q}(x,\xi,t) = \sum_{j=0}^{\left[\frac{m}{2}\right]} \xi^{2j} C_{2j}^{q}(t) + mod(m,2)\xi^{m+1} C_{m+1}^{q}(t)$$

Lorentz Covariance

Cédric Mezrag (CEA-DPhN)

- 2

4/22

< □ > < 同 >

• Polynomiality Property:

Lorentz Covariance

• Positivity property:

$$|H^q(x,\xi,t)| \leq \sqrt{q\left(rac{x+\xi}{1+\xi}
ight)q\left(rac{x-\xi}{1-\xi}
ight)}$$

A. Radysuhkin, Phys. Rev. **D59**, 014030 (1999)
B. Pire *et al.*, Eur. Phys. J. **C8**, 103 (1999)
M. Diehl *et al.*, Nucl. Phys. **B596**, 33 (2001)
P.V. Pobilitsa, Phys. Rev. **D65**, 114015 (2002)

Positivity of Hilbert space norm

- Polynomiality Property:
- Positivity property:

Positivity of Hilbert space norm

Lorentz Covariance

• Support property:

M. Diehl and T. Gousset, Phys. Lett. **B428**, 359 (1998)

Relativistic quantum mechanics

 $x \in [-1; 1]$

June 4th, 2020 4

- Polynomiality Property:
- Positivity property:

Lorentz Covariance

Positivity of Hilbert space norm

• Support property:

Relativistic quantum mechanics

• Soft pion theorem (pion GPDs only)

M.V. Polyakov, Nucl. Phys. B555, 231 (1999) CM et al., Phys. Lett. B741, 190 (2015)

Axial-Vector WTI

- 3

- Polynomiality Property:
- Positivity property:

Lorentz Covariance

Positivity of Hilbert space norm

• Support property:

Relativistic quantum mechanics

• Soft pion theorem (pion GPDs only)

Axial-Vector WTI

Problem

There is no model (until now) fulfilling a priori all these constraints.

June 4th, 2020

- 3

4 / 22

- 4 同 ト 4 ヨ ト 4 ヨ ト

3D structure of the pion: motivations

- The pion is the Goldstone boson of Chiral symmetry breaking
 - unique opportunity to study the 3D structure of a Goldstone boson
 - impact of the DCSB on the internal 3D structure of the pion

3D structure of the pion: motivations

- The pion is the Goldstone boson of Chiral symmetry breaking
 - unique opportunity to study the 3D structure of a Goldstone boson
 - impact of the DCSB on the internal 3D structure of the pion
- Possibility of experimental access ?

figure from D. Amrath et al., Eur. Phys. J. C58 (2008) 179-192

JLab 12 and EIC might be able to look at such processes

3D structure of the pion: motivations

- The pion is the Goldstone boson of Chiral symmetry breaking
 - unique opportunity to study the 3D structure of a Goldstone boson
 - impact of the DCSB on the internal 3D structure of the pion
- Possibility of experimental access ?

figure from D. Amrath et al., Eur. Phys. J. C58 (2008) 179-192

JLab 12 and EIC might be able to look at such processes

The feasibility studies require models of pion GPDs

Cédric Mezrag ((CEA-DPhN)
-----------------	------------

Mesons and Baryons Structure

Polynomiality oriented models

• Double Distribution models based mostly on RDDA

D. Amrath *et al.*, Eur.Phys.J.C 58 (2008) 179-192 I. Musatov and A Radyushkin, Phys.Rev., 2000, D61, 074027

• Pion PDFs are inputs, Pion FFs used to fit t dependence.

Positivity oriented models

- It usually relies on Lightfront Wave Functions
- Standard computations violates polynomiality due to Fock space truncation
- We have developed a technique to bypass this issue

N. Chouika et al. Eur.Phys.J. C77 (2017) no.12, 906
 N. Chouika et al. Phys.Lett. B780 (2018) 287-293

イロト 不得下 イヨト イヨト 二日

Cédric Mezrag (CEA-DPhN)

Hadrons on the lightfront

• Lightfront quantization allows to expand hadrons on a Fock basis:

$$|P,\pi
angle \propto \sum_{eta} \Psi_{eta}^{qar{q}} |qar{q}
angle + \sum_{eta} \Psi_{eta}^{qar{q},qar{q}} |qar{q},qar{q}
angle + \dots$$

 $|P,N
angle \propto \sum_{eta} \Psi_{eta}^{qqq} |qqq
angle + \sum_{eta} \Psi_{eta}^{qqq,qar{q}} |qqq,qar{q}
angle + \dots$

Image: Image:

Hadrons on the lightfront

• Lightfront quantization allows to expand hadrons on a Fock basis:

$$|P,\pi
angle\propto\sum_{eta}\Psi_{eta}^{qar{q}}|qar{q}
angle+\sum_{eta}\Psi_{eta}^{qar{q},qar{q}}|qar{q},qar{q}
angle+\ldots$$

$$|P,N
angle\propto\sum_{eta}\Psi_{eta}^{qqq}|qqq
angle+\sum_{eta}\Psi_{eta}^{qqq,qar{q}}|qqq,qar{q}
angle+\ldots$$

• Non-perturbative physics is contained in the N-particles Lightfront-Wave Functions (LFWF) Ψ^N

- 3

Hadrons on the lightfront

- cea
- Lightfront quantization allows to expand hadrons on a Fock basis:

$$|P,\pi
angle\propto\sum_{eta}\Psi_{eta}^{qar{q}}|qar{q}
angle+\sum_{eta}\Psi_{eta}^{qar{q},qar{q}}|qar{q},qar{q}
angle+\ldots$$

$$|P,N
angle\propto\sum_{eta}\Psi_{eta}^{qqq}|qqq
angle+\sum_{eta}\Psi_{eta}^{qqq,qar{q}}|qqq,qar{q}
angle+\ldots$$

- Non-perturbative physics is contained in the N-particles Lightfront-Wave Functions (LFWF) Ψ^N
- NB for the next section: schematically a distribution amplitude φ is related to the LFWF through:

$$arphi(x) \propto \int rac{\mathrm{d}^2 k_\perp}{(2\pi)^2} \Psi(x,k_\perp)$$

S. Brodsky and G. Lepage, PRD 22, (1980)

LFWFs picture polynomiality

 On the light front, hadronic states can be expanded on a Fock basis ERBL: $|x| < |\xi|$

DGLAP: $|x| > |\xi|$

- Same N LFWFs
- No ambiguity

- N and N + 2 partons LFWFs
- Ambiguity

M. Diehl et al., Nucl. Phys. B596 (2001) 33-65

LFWFs picture polynomiality

 On the light front, hadronic states can be expanded on a Fock basis ERBL: $|x| < |\xi|$

DGLAP: $|x| > |\xi|$

- Same N LFWFs
- No ambiguity

• N and N + 2 partons LFWFs

Ambiguity

M. Diehl et al., Nucl. Phys. B596 (2001) 33-65

LFWFs formalism has the positivity property inbuilt but polynomiality is lost by truncating both in DGLAP and ERBL sectors.

Cédric Mezrag (CEA-DPhN)

Mesons and Baryons Structure

June 4th, 2020

Inverse Radon Transform

$$H(x,\xi,t) = \int_{\Omega} \mathrm{d}\beta \mathrm{d}\alpha \delta(x-\beta-\alpha\xi) \left[F(\beta,\alpha,t) + \xi \delta(\beta)D(\alpha)\right]$$

Cédric Mezrag (CEA-DPhN)

Mesons and Baryons Structure

June 4th, 2020

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □

Inverse Radon Transform

Inverse Radon Transform

Examples

- Good reconstruction of a constant DD
- A bit of noise where it is expected

3 🖒 3

Examples

- Good reconstruction of a constant DD
- A bit of noise where it is expected

• Improved by our new student

J.M. Morgado Chavez

э

Examples

• Improved by our new student

• Good reconstruction of a constant DD

J.M. Morgado Chavez

• A bit of noise where it is expected

Uniqueness is guaranteed by Boman and Todd-Quinto theorem

Cédric Mezrag (CEA-DPhN)

Mesons and Baryons Structure

June 4th, 2020

New techniques to compute GPDs

- The inverse Radon transform is an ill-posed problem
- Numerical implementation can be challenging due to noise

LFWF model from N. Chouika et al., PLB 780 (2018) 287-293

<ロト < 同ト < 回ト < 回ト

Pion 3D structure

What we have

- A new technique to compute GPDs which fulfil all theoretical constraints
- $\bullet\,$ Tested on simple examples $\rightarrow\,$ proof of principle

Pion 3D structure

What we have

- A new technique to compute GPDs which fulfil all theoretical constraints
- $\bullet\,$ Tested on simple examples $\to\,$ proof of principle

What remains to be done

- Apply realistic LFWFs coming from non-perturbative framework (DSE,...) to connect our pion GPDs models with dynamical properties of QCD.
- Assessment of cross sections for Tagged deep exclusive processes \rightarrow can we extract pieces of information on pion GPDs from current and future facilities?

イロト 不得 トイヨト イヨト 二日

Mesons structure: a key ingredient to understand baryon structure

Cédric Mezrag (CEA-DPhN)

Mesons and Baryons Structure

June 4th, 2020

14 / 22

June 4th, 2020

Image: A matrix

$$\langle 0|O^{\alpha,\dots}(z_1^-,\dots,z_n^-)|P,\lambda\rangle$$

• Lightcone operator O of given number of quark and gluon fields

$$\langle 0|O^{\alpha,\dots}(z_1^-,\dots,z_n^-)|P,\lambda\rangle = \sum_j^N \tau_j^{\alpha,\dots}F_j(z_i)$$

- Lightcone operator O of given number of quark and gluon fields
- Expansion in terms of scalar non-pertubative functions $F(z_i)$

$$\langle 0|O^{\alpha,\dots}(z_1^-,\dots,z_n^-)|P,\lambda\rangle = \sum_j^N \tau_j^{\alpha,\dots}F_j(z_i)$$

- Lightcone operator O of given number of quark and gluon fields
- Expansion in terms of scalar non-pertubative functions $F(z_i)$
- The τ_j can be chosen to have a definite twist

3 + + 3 + - 3

$$\langle 0|O^{\alpha,\dots}(z_1^-,\dots,z_n^-)|P,\lambda\rangle = \sum_j^N \tau_j^{\alpha,\dots}F_j(z_i)$$

- Lightcone operator O of given number of quark and gluon fields
- Expansion in terms of scalar non-pertubative functions $F(z_i)$
- The τ_j can be chosen to have a definite twist
- Leading and higher twist contributions can be selected by adequate projections of *O*

14 / 22

- 人間 ト イヨ ト - イヨ ト - ヨ

$$\langle 0|O^{\alpha,\dots}(z_1^-,\dots,z_n^-)|P,\lambda\rangle = \sum_j^N \tau_j^{\alpha,\dots}F_j(z_i)$$

- Lightcone operator O of given number of quark and gluon fields
- Expansion in terms of scalar non-pertubative functions $F(z_i)$
- The τ_j can be chosen to have a definite twist
- Leading and higher twist contributions can be selected by adequate projections of *O*

Both mesons and baryons can (in principle) have multiple independent leading twist DA, and higher-twist DA.

$$\mathcal{F}^{q}(\xi, t, Q^{2}) \propto \frac{\alpha_{s}(\mu_{R})}{Q} \int_{-1}^{1} \mathrm{d}x \frac{F^{q}(x, \xi, t, \mu_{F}^{2})}{\xi - x - i\epsilon} \int_{0}^{1} \mathrm{d}z \frac{\varphi(z, \mu_{\varphi})}{(1 - z)}$$

• DVMP amplitude depends on the meson DA

э

see e.g. D. Mueller et al. Nucl. Phys. B884 (2014) 438-546

$$\mathcal{F}^{q}(\xi, t, Q^{2}) \propto \frac{\alpha_{s}(\mu_{R})}{Q} \int_{-1}^{1} \mathrm{d}x \frac{F^{q}(x, \xi, t, \mu_{F}^{2})}{\xi - x - i\epsilon} \int_{0}^{1} \mathrm{d}z \frac{\varphi(z, \mu_{\varphi})}{(1 - z)}$$

- DVMP amplitude depends on the meson DA
- At LO, the x and z convolutions are fully factorised
- The DA contributes to the absolute normalisation

see e.g. D. Mueller et al. Nucl. Phys. B884 (2014) 438-546

$$\mathcal{F}^{q}(\xi, t, Q^{2}) \propto \frac{\alpha_{s}(\mu_{R})}{Q} \int_{-1}^{1} \mathrm{d}x \frac{F^{q}(x, \xi, t, \mu_{F}^{2})}{\xi - x - i\epsilon} \int_{0}^{1} \mathrm{d}z \frac{\varphi(z, \mu_{\varphi})}{(1 - z)}$$

- DVMP amplitude depends on the meson DA
- At LO, the x and z convolutions are fully factorised
- The DA contributes to the absolute normalisation
- At NLO the situation is more complex, no full separation anymore.

see e.g. D. Mueller et al. Nucl. Phys. B884 (2014) 438-546

$$\mathcal{F}^{q}(\xi, t, Q^{2}) \propto \frac{\alpha_{s}(\mu_{R})}{Q} \int_{-1}^{1} \mathrm{d}x \frac{F^{q}(x, \xi, t, \mu_{F}^{2})}{\xi - x - i\epsilon} \int_{0}^{1} \mathrm{d}z \frac{\varphi(z, \mu_{\varphi})}{(1 - z)}$$

- DVMP amplitude depends on the meson DA
- At LO, the x and z convolutions are fully factorised
- The DA contributes to the absolute normalisation
- At NLO the situation is more complex, no full separation anymore.

What is the impact of various models on DVMP?

Cédric Mezrag (CEA-DPhN)

Mesons and Baryons Structure

see e.g. D. Mueller et al. Nucl. Phys. B884 (2014) 438-546

Models of Pion DA

- Asymptotic DA : $\varphi_{AS} = 6x(1-x)$
- Square-root DA : $\varphi_{SR} = \frac{8}{\pi} \sqrt{x(1-x)}$
 - A. Radyushkin, Nucl.Phys. A532 (1991) 141-154 S. Brodsky et al. Int.J.Mod.Phys.Conf.Ser. 39 (2015) 1560081
- Fits on Lattice second moment of DA

V. Braun et al. Phys.Rev. D92 (2015) no.1, 014504

• Power model :
$$\varphi_p(x) \propto (x(1-x))^{\nu}$$

J. Segovia *et al.*, Phys.Lett. B731 (2014) 13-18
• Log model : $\varphi_{\ln}(x) \propto 1 - \frac{\ln[1+\kappa x(1-x)]}{\kappa x(1-x)}$

C. Mezrag et al., Phys.Lett. B783 (2018) 263-267

Models of Pion DA

- Asymptotic DA : $\varphi_{AS} = 6x(1-x)$
- Square-root DA : $\varphi_{SR} = \frac{8}{\pi} \sqrt{x(1-x)}$
 - A. Radyushkin, Nucl.Phys. A532 (1991) 141-154 S. Brodsky et al. Int.J.Mod.Phys.Conf.Ser. 39 (2015) 1560081
- Fits on Lattice second moment of DA

V. Braun et al. Phys.Rev. D92 (2015) no.1, 014504

► Power model : $\varphi_p(x) \propto (x(1-x))^{\nu}$ J. Segovia *et al.*, Phys.Lett. B731 (2014) 13-18 Log model : $\varphi_{\ln}(x) \propto 1 - \frac{\ln[1 + \kappa x(1-x)]}{\kappa x(1-x)}$ C. Mezrag *et al.*, Phys.Lett. B783 (2018) 263-267

Bottom line

- 4 different concave pion DA models
- 2 tuned to Lattice QCD results of the second moment

Cédric Mezrag (CEA-DPhN)

Mesons and Baryons Structure

June 4th, 2020

- 3

16 / 22

イロト イボト イヨト イヨト

n = -1 Mellin Moment

<□ > < //>

June 4th, 2020

n = -1 Mellin Moment

Additionnal complication : evolution and scale setting

Cédric Mezrag (CEA-DPhN)

Mesons and Baryons Structure

June 4th, 2020 17 / 22

$$\frac{\mathrm{d}\sigma}{\mathrm{d}Q^{2}\mathrm{d}x_{b}\mathrm{d}t\mathrm{d}\phi} = \frac{1}{2\pi} \frac{\mathrm{d}^{2}\Gamma}{\mathrm{d}x_{b}\mathrm{d}Q^{2}} \left[\frac{\mathrm{d}\sigma_{T}}{\mathrm{d}t} + \epsilon \frac{\mathrm{d}\sigma_{L}}{\mathrm{d}t} + \sqrt{1\epsilon(1+\epsilon)} \frac{\mathrm{d}\sigma_{LT}}{\mathrm{d}t} + \epsilon \cos(2\phi) \frac{\mathrm{d}\sigma_{TT}}{\mathrm{d}t} \right]$$

• Standard colinear factorisation tells us that $\frac{\mathrm{d}\sigma_l}{\mathrm{d}t}$ should be the dominant contribution

$$\frac{\mathrm{d}\sigma}{\mathrm{d}Q^2\mathrm{d}x_b\mathrm{d}t\mathrm{d}\phi} = \frac{1}{2\pi}\frac{\mathrm{d}^2\Gamma}{\mathrm{d}x_b\mathrm{d}Q^2} \left[\frac{\mathrm{d}\sigma_T}{\mathrm{d}t} + \epsilon\frac{\mathrm{d}\sigma_L}{\mathrm{d}t} + \sqrt{1\epsilon(1+\epsilon)}\frac{\mathrm{d}\sigma_{LT}}{\mathrm{d}t} + \epsilon\cos(2\phi)\frac{\mathrm{d}\sigma_{TT}}{\mathrm{d}t}\right]$$

- Standard colinear factorisation tells us that $\frac{d\sigma_l}{dt}$ should be the dominant contribution
- Experimentally, at JLab kinematics, $\frac{d\sigma_l}{dt}$ is compatible with zero, the cross section is dominated by $\frac{d\sigma_T}{dt}$

M. Defurne et al. Phys.Rev.Lett. 117 (2016) no.26, 262001

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ ● のQで June 4th, 2020

18 / 22

Cédric Mezrag (CEA-DPhN)

Mesons and Baryons Structure

$$\frac{\mathrm{d}\sigma}{\mathrm{d}Q^2\mathrm{d}x_b\mathrm{d}t\mathrm{d}\phi} = \frac{1}{2\pi}\frac{\mathrm{d}^2\Gamma}{\mathrm{d}x_b\mathrm{d}Q^2} \left[\frac{\mathrm{d}\sigma_T}{\mathrm{d}t} + \epsilon\frac{\mathrm{d}\sigma_L}{\mathrm{d}t} + \sqrt{1\epsilon(1+\epsilon)}\frac{\mathrm{d}\sigma_{LT}}{\mathrm{d}t} + \epsilon\cos(2\phi)\frac{\mathrm{d}\sigma_{TT}}{\mathrm{d}t}\right]$$

- Standard colinear factorisation tells us that $\frac{\mathrm{d}\sigma_{L}}{\mathrm{d}t}$ should be the dominant contribution
- Experimentally, at JLab kinematics, $\frac{d\sigma_L}{dt}$ is compatible with zero, the cross section is dominated by $\frac{d\sigma_T}{dt}$

M. Defurne et al. Phys.Rev.Lett. 117 (2016) no.26, 262001

• Modified mechanism has been suggested, involving pion higher-twist structures LFWFs and transversity nucleon GPDs

S. Goloskokov and P. Kroll, Eur.Phys.J.A47, 112 (2011)

G. R. Goldstein et al., Phys.Rev.D 91 (2015) 11, 114013

18 / 22

イロト 不得 とくき とくき とうせい

$$\frac{\mathrm{d}\sigma}{\mathrm{d}Q^2\mathrm{d}x_b\mathrm{d}t\mathrm{d}\phi} = \frac{1}{2\pi}\frac{\mathrm{d}^2\Gamma}{\mathrm{d}x_b\mathrm{d}Q^2} \left[\frac{\mathrm{d}\sigma_T}{\mathrm{d}t} + \epsilon\frac{\mathrm{d}\sigma_L}{\mathrm{d}t} + \sqrt{1\epsilon(1+\epsilon)}\frac{\mathrm{d}\sigma_{LT}}{\mathrm{d}t} + \epsilon\cos(2\phi)\frac{\mathrm{d}\sigma_{TT}}{\mathrm{d}t}\right]$$

- Standard colinear factorisation tells us that $\frac{\mathrm{d}\sigma_{I}}{\mathrm{d}t}$ should be the dominant contribution
- Experimentally, at JLab kinematics, $\frac{d\sigma_L}{dt}$ is compatible with zero, the cross section is dominated by $\frac{d\sigma_T}{dt}$

M. Defurne et al. Phys.Rev.Lett. 117 (2016) no.26, 262001

• Modified mechanism has been suggested, involving pion higher-twist structures LFWFs and transversity nucleon GPDs

S. Goloskokov and P. Kroll, Eur.Phys.J.A47, 112 (2011)

G. R. Goldstein et al., Phys.Rev.D 91 (2015) 11, 114013

Consequences

- If true, it sheds experimental light on new nucleon matrix elements
- Difficulty: higher-twist structures hardly known

C. Shi et al., Phys.Rev. D92 (2015) 014035

Cédric Mezrag (CEA-DPhN)

- PARTONS \rightarrow open-source software for GPDs phenomenology
- Flexible code architecture allowing GPDs studies in a broad range of assumptions.
- The development on the DVMP branch is now well engaged (Kemal Tezgin and Pawel Sznajder).
 We would like :
 - Standard colinear factorisation : LO and NLO perturbative kernel
 - Suggested chiral-odd mechanisms (Goloskokov-Kroll)
 - Various models of DA
 - Evolution code for the leading twist DA

- PARTONS \rightarrow open-source software for GPDs phenomenology
- Flexible code architecture allowing GPDs studies in a broad range of assumptions.
- The development on the DVMP branch is now well engaged (Kemal Tezgin and Pawel Sznajder).
 We would like :
 - ► Standard colinear factorisation : LO and NLO perturbative kernel
 - Suggested chiral-odd mechanisms (Goloskokov-Kroll)
 - Various models of DA
 - Evolution code for the leading twist DA
- $\bullet~$ PARTONS $\rightarrow~$ first quantitative studies of the impact of the meson DA at LO and NLO on GPD extraction
- \bullet PARTONS \rightarrow comparison with different non-perturbative predictions of the meson DA and the GPDs

Cédric Mezrag (CEA-DPhN)

Mesons and Baryons Structure

Cédric Mezrag (CEA-DPhN)

Mesons and Baryons Structure

June 4th, 2020

20 / 22

Cei

Cédric Mezrag (CEA-DPhN)

Mesons and Baryons Structure

June 4th, 2020

Meson Structure

- Study of meson structure is interesting by itself
- Goal: A formalism able to handle all type of matrix elements
- We have highlighted limitations of the impulse approximation and propose new method based on LFWF to study meson 3D structure
- Shed light on diquark correlations

DVMP and DA

- DVMP is very sensitive to the shape of DA
- Non-perturbative approaches help but still no definitive solution
- DVMP studies may need to be coupled to other processes sensitive to GPDs (DVCS) and DA (Meson Form Factors?)
- PARTONS will be a good tool to exploit DVMP data

イロト イヨト イヨト

- 3

Thank you for your attention

Cédric Mezrag (CEA-DPhN)

Mesons and Baryons Structure

June 4th, 2020

< □ > < 同 >

E ► ★ E ► _ E