Exploring pion structure with Minkowski space dynamical model

Tobias Frederico
Instituto Tecnológico de Aeronáutica
São José dos Campos - Brazil
tobias@ita.br

 in Nuclear Science Workshop series

Workshop on Pion and Kaon Structure Functions at the EIC 2-5 June 2020 online

Motivation

Observables associated with the hadron structure

Lorcé, Pasquini, Vanderhaeghen JHEP05(2011)041

- TMD, PDFs, SL and TL form factors (pion)...

Outline

$>$ quark-gluon vertex from LQCD data and the quark Gap Equation quark-antiquark BSE for the pion (Minkowski space/LF wave function)

Pion Electromagnetic form-factor
> Summary

The Quark-Gap Equation and the Quark-Gluon Vertex

Spontaneous Chiral symmetry breaking \& pion as a Goldstone boson (origin of the nucleon mass - "constituent quarks", Roberts, Maris, Tandy, Cloet, Maris...)

Schwinger-Dyson eq.
Quark propagator

Quark-gluon vertex $\underbrace{p_{2}}$

$$
\Gamma_{\mu}^{a}\left(p_{1}, p_{2}, p_{3}\right)=g t^{a} \Gamma_{\mu}\left(p_{1}, p_{2}, p_{3}\right)
$$

$$
\Gamma_{\mu}\left(p_{1}, p_{2}, p_{3}\right)=\Gamma_{\mu}^{(L)}\left(p_{1}, p_{2}, p_{3}\right)+\Gamma_{\mu}^{(T)}\left(p_{1}, p_{2}, p_{3}\right)
$$

Longitudinal component

$$
\begin{aligned}
\Gamma_{\mu}^{\mathrm{L}}\left(p_{1}, p_{2}, p_{3}\right)= & -i\left(\lambda_{1} \gamma_{\mu}+\lambda_{2}\left(\not p_{1}-\not p_{2}\right)\left(p_{1}-p_{2}\right)_{\mu}\right. \\
& \left.+\lambda_{3}\left(p_{1}-p_{2}\right)_{\mu}+\lambda_{4} \sigma_{\mu \nu}\left(p_{1}-p_{2}\right)^{\nu}\right)
\end{aligned}
$$

INPUTS FROM LQCD in Landau gauge: SL momenta

Gluon propagator

$D_{\mu \nu}^{a b}(q)=-i \delta^{a b}\left(g_{\mu \nu}-\frac{q_{\mu} q_{\nu}}{q^{2}}\right) D\left(q^{2}\right)$
Dudal, Oliveira, Silva, Ann. Phys. 397, 351 (2018)

Ghost propagator

$$
D_{g h}\left(p^{2}\right)=\frac{F\left(p^{2}\right)}{p^{2}}
$$

Duarte, Oliveira, Silva, PRD 94 (2016) 014502

Quark propagator Oliveira, Silva, Skullerud and Sternbeck, PRD 99 (2019) 094506

Parametrizations summarized in Oliveira, Paula, Frederico, de Melo, EPJ C 79 (2019) 116

Slanov-Taylor identity \& Quark-Ghost Kernel Davydychev, Osland, Saks, PRD 63, 014022 (2000)

$$
\begin{array}{lc}
p_{3}^{\mu} \Gamma_{\mu}\left(p_{1}, p_{2}, p_{3}\right)= & H\left(p_{1}, p_{2}, p_{3}\right)=X_{0} \mathbb{I}_{D}+X_{1} \phi_{1}+X_{2} \phi_{2}+X_{3} \sigma_{\alpha \beta} p_{1}^{\alpha} p_{2}^{\beta}, \\
F\left(p_{3}^{2}\right)\left[S^{-1}\left(-p_{1}\right) H\left(p_{1}, p_{2}, p_{3}\right)-\bar{H}\left(p_{2}, p_{1}, p_{3}\right) S^{-1}\left(p_{2}\right)\right] & \bar{H}\left(p_{2}, p_{1}, p_{3}\right)=\bar{X}_{0} \mathbb{I}_{D}-\bar{X}_{2} \not \phi_{1}-\bar{X}_{1} \not p_{2}+\bar{X}_{3} \sigma_{\alpha \beta} p_{1}^{\alpha} p_{2}^{\beta} \\
X_{i} \equiv X_{i}\left(p_{1}, p_{2}, p_{3}\right) \text { and } \bar{X}_{i} \equiv X_{i}\left(p_{2}, p_{1}, p_{3}\right) .
\end{array}
$$

$\lambda_{i}\left(X_{i}\right) \quad$ Aguilar, Papavassiliou, PRD 83, 014013 (2011)
Parametrizations of X from: Oliveira, Paula, Frederico, de Melo EPJC 78(7), 553 (2018) \& EPJC 79 (2019) 116
soft gluon limit from LQCD
Oliveira, et al Acta Phys. Polon. Supp. (2016) 363

Ansatz for the longitudinal form factors based on the STI:
Oliveira, Frederico, de Paula, EPJC 80 (2020) 484

$$
\begin{align*}
\lambda_{1} & =\frac{F\left(q^{2}\right)}{2}\left\{2 B\left(p^{2}\right) D\left(\frac{p^{2}+k^{2}}{2}\right) Y_{1}\left(q^{2}\right)\right. \\
& \left.+A\left(p^{2}\right)\left[X_{0}\left(q^{2}\right)+\left(p^{2}-p \cdot k\right) D\left(\frac{p^{2}+k^{2}}{2}\right) Y_{3}\left(q^{2}\right)\right]\right\} \\
& +(p \leftrightarrow k), \\
\lambda_{2} & =\frac{F\left(q^{2}\right)}{2\left(k^{2}-p^{2}\right)} A\left(p^{2}\right)\left\{\left(p^{2}+p \cdot k\right) D\left(\frac{p^{2}+k^{2}}{2}\right) Y_{3}\left(q^{2}\right)\right. \\
& \left.-X_{0}\left(q^{2}\right)\right\}+(p \leftrightarrow k), \\
\lambda_{3} & =\frac{F\left(q^{2}\right)}{p^{2}-k^{2}}\left\{A\left(p^{2}\right)\left[p^{2}+p \cdot k\right] D\left(\frac{p^{2}+k^{2}}{2}\right) Y_{1}\left(q^{2}\right)\right. \\
& \left.+B\left(p^{2}\right) X_{0}\left(q^{2}\right)\right\}+(p \leftrightarrow k), \\
\lambda_{4} & =-\frac{F\left(q^{2}\right)}{2} D\left(\frac{p^{2}+k^{2}}{2}\right)\left\{A\left(p^{2}\right) Y_{1}\left(q^{2}\right)+B\left(p^{2}\right) Y_{3}\left(q^{2}\right)\right\} \\
& -(p \leftrightarrow k), \tag{29}
\end{align*}
$$

> Padé approximants
$>$ Error minimization ~ 2-4\%
$>$ simulating annealing

$$
\alpha_{s}=0.22 \text { and all propagators renormalised at } \mu=4.3 \mathrm{GeV}
$$

Oliveira, Frederico, de Paula, EPJC 80 (2020) 484

BSE quark-antiquark \& pion model

Ladder approximation (L): suppression of $X L$ for $N c=3$
[A. Nogueira, CR Ji, Ydrefors, TF, PLB777(2017) 207]
$>$ constituent quark mass $\sim 200-300 \mathrm{MeV}$
$>$ Vector exchange

$$
i \mathcal{K}_{V}^{(L d) \mu \nu}\left(k, k^{\prime}\right)=-i g^{2} \frac{g^{\mu \nu}}{\left(k-k^{\prime}\right)^{2}-\mu^{2}+i \epsilon}
$$

$\mathrm{M} \sim 500 \mathrm{MeV}$
$>$ quark-gluon vertex form-factor $\quad \lambda_{1} \gamma_{\mu} \quad F(q)=\frac{\mu^{2}-\Lambda^{2}}{q^{2}-\Lambda^{2}+i \epsilon}$

Main Tool: Nakanishi Integral Representation (NIR)

"Parametric representation for any Feynman diagram for interacting bosons, with a denominator carrying the overall analytical behavior in Minkowski space" (Nakanishi 1962)

Bethe-Salpeter amplitude

$$
\begin{array}{r}
\Phi(k, p)=\int_{-1}^{1} d z^{\prime} \int_{0}^{\infty} d \gamma^{\prime} \frac{g\left(\gamma^{\prime}, z^{\prime}\right)}{\left(\gamma^{\prime}+\kappa^{2}-k^{2}-p \cdot k z^{\prime}-i \epsilon\right)^{3}} \\
\kappa^{2}=m^{2}-\frac{M^{2}}{4}
\end{array}
$$

Bosons: Kusaka and Williams, PRD 51 (1995) 7026;
Light-front projection: integration in k Carbonell\&Karmanov EPJA27(2006)1;EPJA27(2006)11;
TF, Salme, Viviani PRD89(2014) 016010,...
Fermions (0): Carbonell and Karmanov EPJA 46 (2010) 387;
de Paula, TF,Salmè, Viviani PRD 94 (2016) 071901;
de Paula, TF, Pimentel, Salmè, Viviani, EPJC 77 (2017) 764

$$
\begin{gathered}
\Phi(k, p)=S_{1} \phi_{1}+S_{2} \phi_{2}+S_{3} \phi_{3}+S_{4} \phi_{4} \\
S_{1}=\gamma_{5} \quad S_{2}=\frac{1}{M} p p \gamma_{5} \quad S_{3}=\frac{k \cdot p}{M^{3}} p p \gamma_{5}-\frac{1}{M} \not k \gamma_{5} \quad S_{4}=\frac{i}{M^{2}} \sigma_{\mu \nu} p^{\mu} k^{\nu} \gamma_{5}
\end{gathered}
$$

Generalized Stietjes transform and the LF valence wave function Carbonell, TF, Karmanov PLB769 (2017) 418 (bosons)

$$
\Psi_{i}\left(\gamma, z ; \kappa^{2}\right)=\int_{0}^{\infty} d \gamma^{\prime} \frac{g_{i}\left(\gamma^{\prime}, z ; \kappa^{2}\right)}{\left[\gamma+\gamma^{\prime}+m^{2} z^{2}+\left(1-z^{2}\right) \kappa^{2}\right]^{2}}
$$

$$
\gamma=k_{\perp}^{2} \quad z=2 x-1
$$

UNIQUENESS OF THE NAKANISHI REPRESENTATION

PHENOMENOLOGICAL APPLICATIONS from the valence wf \rightarrow BSA!
> Kernel of the LF projected pion BSE with NIR
$>$ end-point singularities in the k^{-}integration (zero-modes)

$$
\begin{gathered}
\text { T.M. Yan, Phys. Rev. D 7, } 1780 \text { (1973) } \\
\mathcal{I}(\beta, y)=\int_{-\infty}^{\infty} \frac{d x}{[\beta x-y \mp i \epsilon]^{2}}= \pm \frac{2 \pi i \delta(\beta)}{[-y \mp i \epsilon]}
\end{gathered}
$$

\rightarrow Kernel with delta and its derivative!

End-point singularities- more intuitive: can be treated by the pole-dislocation method de Melo et al. NPA631 (1998) 574C, PLB708 (2012) 87

Valence wave function

W. de Paula, JHA Nogueira, E. Ydrefors, G. Salmè in preparation

Normalization: $\quad i N_{c} \int \frac{d^{4} k}{(2 \pi)^{4}}\left[\phi_{1} \phi_{1}+\phi_{2} \phi_{2}+b \phi_{3} \phi_{3}+b \phi_{4} \phi_{4}-4 b \phi_{1} \phi_{4}-4 \frac{m}{M} \phi_{2} \phi_{1}\right]=-1$

Valence probability: $\quad P_{\text {val }}=\frac{N_{c}}{16 \pi^{2}} \int_{-1}^{1} d z \int_{0}^{\infty} d \gamma\left[\left|\psi^{\uparrow \downarrow}(\gamma, z)\right|^{2}+\left|\psi^{\uparrow \downarrow}(\gamma, z)\right|^{2}\right]$

$$
\begin{aligned}
& \psi_{\uparrow \downarrow}(\gamma, z)= \psi_{2}(\gamma, z)+\frac{z}{2} \psi_{3}(\gamma, z) \\
&+\frac{1}{M^{3}} \int_{0}^{\infty} d \gamma^{\prime} \frac{\partial g_{3}\left(\gamma^{\prime}, z\right) / \partial z}{\left[\gamma+\gamma^{\prime}+z^{2} m^{2}+\left(1-z^{2}\right) \kappa^{2}\right]} \\
& \psi_{\uparrow \uparrow}(\gamma, z) \equiv \frac{\sqrt{\gamma}}{M} \psi_{4}(\gamma, z), \\
& \psi_{i}(\gamma, z)=-\frac{1}{M} \int_{0}^{\infty} d \gamma^{\prime} \frac{g_{i}\left(\gamma^{\prime}, z\right)}{\left[\gamma+\gamma^{\prime}+m^{2} z^{2}+\left(1-z^{2}\right) \kappa^{2}\right]^{2}} \\
& \gamma=k_{\perp}^{2} \text { and } z=2 \xi-1
\end{aligned}
$$

Light-front amplitudes

B / m	$M_{\pi}(\mathrm{MeV})$	g^{2}	$\mu(\mathrm{MeV})$	Λ / m	$m(\mathrm{MeV})$	$p_{\text {val }}$
1.35	140	26.718	430	1.0	215	0.68

Kernel has similar magnitude with LQCD form-factor $\sim \mathbf{5 0 \%}$

Pion EM Form Factor

Alvarenga Nogueira, de Paula, TF, Mezrag, Ydrefors, Salmè in preparation

$$
F\left(Q^{2}\right)=\frac{N_{c}}{2^{5} \pi^{2} N_{Q_{0}}} \sum_{i, j=1}^{4} \int_{0}^{\infty} d \gamma \int_{-1}^{1} d z g_{i}(\gamma, z) \int_{0}^{\infty} d \gamma^{\prime} \int_{-1}^{1} d z^{\prime} g_{j}\left(\gamma^{\prime}, z^{\prime}\right) \int_{0}^{1} d v v^{2}(1-v)^{2} c_{i j}
$$

$$
\begin{gathered}
F_{\pi}\left(Q^{2}\right)=\sum_{n} F_{n}\left(Q^{2}\right)=F_{v a l}\left(Q^{2}\right)+\begin{array}{r}
F_{n v a l}\left(Q^{2}\right) \\
\\
q \bar{q}+g l u o n s
\end{array} \\
r_{\pi}^{2}=P_{v a l} r_{v a l}^{2}+\left(1-P_{v a l}\right) r_{n v a l}^{2} \\
B=1.45 \mathrm{~m}_{\mathrm{q}} \quad \mathrm{~m}_{\text {glue }}=2.5 \mathrm{~m}_{\mathrm{q}} \quad \Lambda=1.2 \mathrm{~m}_{\mathrm{q}} \quad \mathrm{~m}_{\mathrm{q}}=255 \mathrm{MeV} \\
\begin{array}{|c|c|c|}
\hline r_{\pi}(\mathrm{fm}) & r_{\text {val }}(\mathrm{fm}) & r_{\text {nval }}(\mathrm{fm}) \\
\hline 0.661 & 0.709 & 0.537 \\
\hline
\end{array}
\end{gathered}
$$

$0.657 \pm 0.003 \mathrm{fm} \quad$ B. Ananthanarayan, I. Caprini, D. Das, Phys. Rev. Lett. 119 (2017) 132002
$70 \% \quad$ Valence
higher Fock-components \rightarrow large virtuality \rightarrow more compact 30%

Preliminary

- QCD inspired fermionic BSE model
- Solution in Minkowski space via Nakanishi Int. Representation;
- pion: LF amplitudes, SL FF
- pion: PDF (talk by Giovanni Salmè)

Future ...

- Self-energies, Landau gauge, quark-gluon vertex: ingredients from LQCD
- Confinement \& quark-gluon vertex?
- Beyond the pion, kaon, D, B, rho..., and the nucleon
- TL FF, GPDs (DGLAP\&ERBL),
- GTMDs (DGLAP\&ERBL),
- Fragmentation Functions...

THANK YOU!

Schematic view: TMDs \& PDFs

FSI gluon exchange: T-odd

TF \& Miller PRD 50 (1994)210

$$
q^{+}=q^{0}+q^{3} \quad q^{-}=q^{0}-q^{3}
$$

$q^{-} \longrightarrow$ infty
DIS

Bethe-Salpeter Amplitude @ $\mathbf{x}^{+}=0$

Bethe-Salpeter amplitude: beyond the valence ståtes Light-front projection

, higher Fock-components
, gluon radiation = initial state interaction (ISI)

- gluon radiation in the final state (FSI)

Generalized Stietjes transform and the LF valence wave function II Carbonell, TF, Karmanov PLB769 (2017) 418

$$
f(\gamma) \equiv \int_{0}^{\infty} d \gamma^{\prime} L\left(\gamma, \gamma^{\prime}\right) g\left(\gamma^{\prime}\right)=\int_{0}^{\infty} d \gamma^{\prime} \frac{g\left(\gamma^{\prime}\right)}{\left(\gamma^{\prime}+\gamma+b\right)^{2}}
$$

denoted symbolically as $f=\hat{L} g$.

$$
g(\gamma)=\hat{L}^{-1} f=\frac{\gamma}{2 \pi} \int_{-\pi}^{\pi} d \phi e^{i \phi} f\left(\gamma e^{i \phi}-b\right)
$$

J.H. Schwarz, J. Math. Phys. 46 (2005) 014501,

