Pion-induced Drell-Yan and pion TMD distribution

Alexey Vladimirov

Regensburg University

Workshop on Pion and Kaon Structure Functions at the EIC

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 臣 の�?

I present the analysis of q_T -spectrum of pion-induced DY within TMD factorization **JHEP 10 (2019) 090 [1907.10356]**

Main aim: Preparation for COMPASS πDY

Plan of talk

- ▶ Reminder TMD factorization
- \triangleright π DY data TMD data
- ▶ Problems with normalization of fixed target DY
- ▶ TMDs for pion!

イロト イヨト イヨト イヨト

A.Vladimirov

TMD factorization formula for DY with TMD evolution

$$\frac{d\sigma}{dxdzdQ^{2}d^{2}\mathbf{q}_{T}} = \sum_{ff'} H_{ff}\left(\frac{Q}{\mu}\right) \int d^{2}b \, e^{i(\mathbf{b}\cdot\mathbf{q}_{T})} F_{f\leftarrow p}(x_{1},b,\mu,\zeta) F_{f'\leftarrow\pi}(x_{2},b,\mu,\zeta)$$

TMD evolution (usual solution)

$$\frac{d\sigma}{dxdzdQ^{2}d^{2}\mathbf{q}_{T}} = \sum_{ff'} H_{ff'}\left(\frac{Q}{\mu}\right) \int \dots e^{\int_{\mu_{0}}^{Q} \gamma_{V} - \mathcal{D}\ln(\frac{\zeta}{\zeta_{0}})} F_{f\leftarrow p}(x_{1},b,\mu_{0},\zeta_{0}) F_{f'\leftarrow\pi}(x_{2},b,\mu_{0},\zeta_{0})$$

$$e^{\int_{\mu_0}^{Q} \gamma_V - \mathcal{D}\ln(\frac{\zeta}{\zeta_0})} = \exp\left(\int_{\mu_0}^{\mu} \frac{d\mu'}{\mu'} \left(\Gamma_{cusp}(\mu')\ln\left(\frac{\mu^2}{\sqrt{\zeta}}\right) - \gamma_V(\mu')\right) - D(b,\mu_0)\ln\left(\frac{\zeta}{\zeta_0}\right)\right)$$

(日) (四) (三) (三)

Universität Regensburg

→ ◀ 匣 ▶ 트 ∽ ९ ୯ June 5, 2020 3 / 16 TMD factorization formula for DY with TMD evolution

$$\frac{d\sigma}{dxdzdQ^2d^2\mathbf{q}_T} = \sum_{ff'} H_{ff'}\left(\frac{Q}{\mu}\right) \int d^2b \, e^{i(\mathbf{b}\cdot\mathbf{q}_T)} \, F_{f\leftarrow p}(x_1, b, \mu, \zeta) F_{f'\leftarrow \pi}(x_2, b, \mu, \zeta)$$

$$\text{TMD evolution (optimal solution)}$$

$$\frac{d\sigma}{(\zeta - \text{ prescription})}$$

$$\frac{d\sigma}{dxdzdQ^2d^2\mathbf{q}_T} = \sum_{ff'} H_{ff'}\left(\frac{Q}{\mu}\right) \int d^2b \, e^{i(\mathbf{b}\cdot\mathbf{q}_T)} \, \left(\frac{Q^2}{\zeta_{\mu}[\mathcal{D}]}\right)^{-2\mathcal{D}(b,\mu)} F_{f\leftarrow p}(x_1, b) F_{f'\leftarrow \pi}(x_2, b)$$

- ▶ Clean separation of TMDs from non-perturbative evolution (TMDs are defined at the point with $\mathcal{D} = 0$)
- \blacktriangleright Solution is made in terms of non-perturbative \mathcal{D}
- ▶ Simple and fast expression for TMD evolution factor (just an algebraic function)
- ▶ Simpler expression for perturbative matching for TMDs

イロト イヨト イヨト イヨト

June 5, 2020 3 / 16

Universität Regensburg

TMD factorization formula (in ζ -prescription)

Each function is responsible for a separate kinematic variable

▶ Rapidity AD:
$$\mathcal{D} \rightarrow Q$$
 and b

- ▶ TMD N1: $F_1 \rightarrow x_1$ and b
- ▶ TMD N2: $F_2 \rightarrow x_2$ and b

rsität Regensburg

A. Vladimirov

June 5, 2020 4/16

イロト イヨト イヨト イヨト

Universality of TMDs

 $B_{\rm NP} c_0 \ \lambda_1 \ \lambda_2 \ \lambda_3 \ \lambda_4 \ \lambda_5 \ \eta_1 \ \eta_2 \ \eta_3 \ \eta_4$

June 5, 2020

5/16

 $B_{\rm NP}$ -0.4-0.6 -0.3Global fit SV19 -0.7 0.50.3 c_0 unpolarized DY + SIDIS λ_1 [1912.06532] λ_2 λ_3 TMDPDF ▶ DY: LHC, Tevatron, FermiLab, RHIC λ_4 ▶ SIDIS: HERMES, COMPASS λ_5 ▶ Large energy coverage (2 < Q < 150 GeV) = η_1 decorrelation of RAD and TMDs η_2 TMDFF η_3 \triangleright NNLO matching + N³LO evolution η_4 **SV19**

TMD evolution and proton TMD PDF is known To describe πDY one needs only πTMD PDF Universität Regensburg

Model for π TMD PDF

$$F_{q \leftarrow \pi}(x, b) = \sum_{f} \int_{x}^{1} \frac{dy}{y} C_{q \leftarrow f}(y, \mathbf{L}_{\mu}) f_{1, f \to \pi}\left(\frac{x}{y}, \mu\right) f_{\mathrm{NP}}(x, b)$$

- ▶ NNLO matching to collinear distributions
- Collinear PDF is JAM18pionPDFnlo
- ▶ NP-part can be Gauss/Exponent, with three parameters $a_{1,2,3}$

$$f_{\rm NP}(x,b) = \exp\left(-\frac{(a_1 + (1-x)^2 a_2)b^2}{\sqrt{1+a_3b^2}}\right)$$

Universität Regensburg

June 5, 2020 6 / 16

$\pi DY q_T$ -data not too much...

	Experiment	$\sqrt{s}[\text{GeV}]$	$Q[{ m GeV}]$	x_F	N_{pt}	corr.err.	Typical stat.err.
	E537 (Q -diff.)	15.3	4.0 < Q < 9.0 in 10 bins	$-0.1 < x_F < 1.0$	60/146	8%	$\sim 20\%$
	E537 (x_F -diff.)	15.3	4.0 < Q < 9.0	$-0.1 < x_F < 1.0$ in 11 bins	110/165	8%	$\sim 20\%$
	E615 (Q -diff.)	21.8	4.05 < Q < 13.05 in 10(8) bins	$0.0 < x_F < 1.0$	51/155	16%	$\sim 5\%$
	E615 (x_F -diff.)	21.8	4.05 < Q < 8.55	$0.0 < x_F < 1.0$ in 10 bins	90/159	16%	$\sim 5\%$
	NA3	16.8, 19.4 22.9	$\begin{array}{c} 4.1 < Q < 8.5 \\ 4.1 < Q < 4.7 \end{array}$	y > 0(?) 0 < y < 0.4	_	15%	_

The usual TMD cut $(q_T/Q < 0.25)$

Data selected for fit

reason:

- ▶ E537 has too large uncertainties
- ▶ NA3 is available only as a plot
- ► It is better to use x-differential data, since Q-dependence is known.

・ロット (雪) ((目)) (

gensburg

Possible sources of discrepancy

- ▶ Nuclear effects: multiplication by R(x) could give ~ 10% effect (not enough+x-dependence)
- \blacktriangleright Effect of πPDF uncertainty: significant at a point (up to 20%) but only 2-3% in normalization
- \blacktriangleright Threshold logarithms: could be but the main disagreement is at $x\sim 0.2$ and decreases to $x\sim 0.7$
- ▶ Power corrections: unknown (but I would not expect more than 5%)
- ▶ Model bias: ?? (I don't think so)
- ▶ Resonance contamination: The bins go down to 3 4 GeV, they could be contaminated by J/ψ or ψ' resonances. However, typically, in this case theory overshoot the data.

The deficit in normalization is typical for TMD description of fixed-target experiments However, it is usually 10-20% (not 50%)

 Such problem does not exists for collider experiments

Comparison with COMPASS preliminary [Phys.Rev.Lett. 119 (2017)]

Normalization by theory

June 5, 2020 13/16

æ

イロト イヨト イヨト イヨト

Universität Regensburg

 $a_1 = 0.17 \pm 0.11 \pm 0.03,$ $a_2 = 0.48 \pm 0.34 \pm 0.06,$ $a_3 = 2.15 \pm 3.25 \pm 0.32.$

A. Vladimirov

Pion is "narrower" in the momentum space.

Conclusion

- ▶ The analysis of π DY is made within the best available TMD-framework
 - NNLO matching, N³LO evolution
 - ▶ Other components (proton TMD, NP TMD evolution) are from the global analysis SV19
 - Numerics is done by artemide
- ▶ Pion TMDs are extracted from the existing data
 - ▶ Normalization problem of q_T-dependent E615-data
 - Rest available data (lower quality) have no problem with normalization
- ▶ The extraction Vpion19 is available as a part of default artemide distribution

github.com/VladimirovAlexey/artemide-public

Prospects

- ▶ The road to consistent global analysis (π DY angular modulations by COMPASS)
- \blacktriangleright Looking forward for COMPASS unpolarized $\pi \mathrm{DY}$

• …

Universität Regensburg

16 / 16

イロト イヨト イヨト イヨト

June 5, 2020

Backup slides

A.Vladimirov

June 5, 2020 17 / 16

19/16