THE TRANSVERSE STRUCTURE OF THE PION IN MOMENTUM SPACE FROM ADS/QCD MODELS

Sabrina Cotogno (sabrina.cotogno@polytechnique.edu)

in collaboration with: Alessandro Bacchetta and Barbara Pasquini (UniPV) based on: Physics Letters B 771 (2017) 546–552

Workshop on Pion and Kaon Structure Functions at the EIC 2-5 June 2020

HADRON STRUCTURE AND LFWFS

$$|P,\Lambda\rangle = \sum_{N,\beta} \int \left[\frac{dx}{\sqrt{x}}\right]_N \left[d^2 \mathbf{k}_T\right]$$

 $]_{N} \psi^{\Lambda}_{N,\beta}(r) | N; k_{1}, \cdots, k_{N}, \beta_{1}, \cdots, \beta_{N} \rangle$

HADRON STRUCTURE AND LFWFS

$$|P,\Lambda\rangle = \sum_{N,\beta} \int \left[\frac{dx}{\sqrt{x}}\right]_N \left[d^2 \mathbf{k}_T\right]_N$$

LFWFs overlap representation formulae:

$$\sum_{\beta} \int d^{2} \boldsymbol{k}_{T} |\psi_{\beta}^{\Lambda}(x, \boldsymbol{k}_{T})|^{2} \qquad \sum_{\beta=\beta'} \int dx d^{2} \boldsymbol{k}_{T} |\psi_{\beta}^{\Lambda}(x, \boldsymbol{k}_{T})|^{2}$$

$$PDF \qquad Form$$

 $\Big]_N \psi^{\Lambda}_{N,\beta}(r) | N; k_1, \cdots, k_N, \beta_1, \cdots, \beta_N \rangle$

 $\boldsymbol{k}_{T}\psi_{\beta'}^{\Lambda'}(x,\boldsymbol{k}_{T}')\psi_{\beta}^{\Lambda}(x,\boldsymbol{k}_{T})$

LIGHT-FRONT HOLOGRAPHIC (LFH) QCD

String theory in a 5d Anti-de Sitter space

Conformal field theory on the 4-dimensional boundary of the AdS

Applicability to QCD?

Soft-wall model (harmonic confining potential $U(z) \sim \kappa^2 z^2 \rightarrow Confinement$

[Brodsky, de Téramond et al., 2004-present]

Form Factors matching

[J.M. Maldacena, (1999)]

LIGHT-FRONT HOLOGRAPHIC (LFH) QCD

String theory in a 5d Anti-de Sitter space

Conformal field theory on the 4-dimensional boundary of the AdS

Applicability to QCD? Soft-wall model (harmonic confining potential $U(z) \sim \kappa^2 z^2 \rightarrow Confinement$

[Brodsky, de Téramond et al., 2004-present]

Free current propagating in AdS space Confining current in a warped AdS space

Valence LFWF

$$\psi_{q\bar{q}/\pi}^{V}(x, \mathbf{k}_{T}) \sim \frac{1}{\kappa\sqrt{(1-x)x}} e^{-\frac{1}{2}\frac{\mathbf{k}_{T}^{2}}{\kappa^{2}x(1-x)}}$$

Form Factors matching

[J.M. Maldacena, (1999)]

Effective LFWF

$$\psi_{q\overline{q}/\pi}^{E}\left(x, \ \boldsymbol{k}_{T}\right) \sim \frac{\sqrt{\log\left(\frac{1}{x}\right)}}{\kappa\left(1-x\right)} e^{-\frac{\log(1/x)}{(1-x)^{2}}\frac{\boldsymbol{k}_{T}^{2}}{2\kappa^{2}}}$$

IN THE LITERATURE

Theory

- Dosch, et al. (2006-present)
- Soft-wall model for AdS/QCD: Karch, Katz, et al. (2006)
- Phenomenological studies
- et al (2017-2020), Kaur, Dahiya(2019), Chang, Raya, Wang (2020), etc...

Light-front holography (LFH) original approach and improvements: Brodsky, de Téramond, Deur,

Harmonic potential in LF corresponds to a linear (confinining) potential in IF: Trawinski, et al (2014)

PDFs, FFs, TMDs, GPDs, double PDFs Brodsky, Cao, deTéramond (2011), Forshaw, Sandapen (2012), Vega, Schmidt, Gutsche, Lyubovitskij, et al (2009-2020), Chakrabarti, Mondal, et al. (2013-2019), Bacchetta, Cotogno, Pasquini (2017), Rinaldi, Traini, Vento, et al. (2017-2020), Ahmady, Sandapen,

MODELS OF LFWFS

Inclusion of the quark masses → completion of the invariant mass operator

$$M^{2} = \sum_{i} \frac{m_{i}^{2} + k_{Ti}^{2}}{x_{i}} = \frac{m^{2} + k_{T}^{2}}{x(1-x)}$$

Valence LFWF (from bound state equation)

$$\psi_{q\bar{q}/\pi}^{V}(x, \ \boldsymbol{k}_{T}) = A \frac{4\pi}{\kappa \sqrt{(1-x)x}} e^{-\frac{1}{2\kappa^{2}} \left(\frac{m^{2}}{x(1-x)} + \frac{\boldsymbol{k}_{T}^{2}}{x(1-x)}\right)}$$

Constant A is set such that: $\int_{0}^{1} dx \int_{-\infty}^{+\infty} \frac{d^{2} \boldsymbol{k}_{T}}{16\pi^{3}} |\psi_{q\bar{q}/\pi}^{V}(x, \boldsymbol{k}_{T})|^{2} = 1.$

[Brodsky, de Téramond et al., 2004-2015]

Effective LFWF $\psi_{q\overline{q}/\pi}^{E}(x, \ \mathbf{k}_{T}) = 4\pi A \frac{\sqrt{\log\left(\frac{1}{x}\right)}}{\kappa(1-x)} e^{-\frac{\log(1/x)}{(1-x)^{2}}\frac{\mathbf{k}_{T}^{2}+m^{2}}{2\kappa^{2}}}$

MODELS OF LFWFS

Inclusion of the quark masses → completion of the invariant mass operator

$$M^{2} = \sum_{i} \frac{m_{i}^{2} + k_{Ti}^{2}}{x_{i}} = \frac{m^{2} + k_{T}^{2}}{x(1-x)}$$

Valence LFWF (from bound state equation)

$$\psi_{q\overline{q}/\pi}^{V}(x, \ \mathbf{k}_{T}) = A \frac{4\pi}{\kappa \sqrt{(1-x)x}} e^{-\frac{1}{2\kappa^{2}} \left(\frac{m^{2}}{x(1-x)} + \frac{\mathbf{k}_{T}^{2}}{x(1-x)}\right)}$$

Constant A is set such that: $\int_0^1 dx \int_{-\infty}^{+\infty} \frac{d^2 \mathbf{k}_T}{16\pi^3} |\psi_{q\bar{q}/\pi}^V(x, \mathbf{k}_T)|^2 = 1.$

What we do: we fix the parameters of the model (m, K, Q₀) using the experimental info on PDF and FF and calculate TMD

[Brodsky, de Téramond et al., 2004-2015]

Effective LFWF $\psi_{q\overline{q}/\pi}^{E}(x, \mathbf{k}_{T}) = 4\pi A \frac{\sqrt{\log\left(\frac{1}{x}\right)}}{\kappa\left(1-x\right)} e^{-\frac{\log(1/x)}{(1-x)^{2}}\frac{\mathbf{k}_{T}^{2}+m^{2}}{2\kappa^{2}}}$

FF AND PDF OF THE PION - I

Physics Letters B 771 (2017) 546-552

$$f_1^V(x;Q_0) = A^2 e^{\left(-\frac{m^2}{\kappa^2 x} - \frac{m^2}{\kappa^2(1-x)}\right)}$$

$f_1^E(x;Q_0) = A^2 e^{-\frac{\log(1/x)}{(1-x)^2} \frac{m^2}{\kappa^2}}$

K. Wijesooriya, P. E. Reimer, and R. J. Holt Phys. Rev. C 72, 065203 6

FF AND PDF OF THE PION - II

Physics Letters B 771 (2017) 546–552

$$F_{\pi}^{V}(Q^{2}) = \int_{0}^{1} dx A^{2} e^{\left(-\frac{m^{2}}{\kappa^{2}x} - \frac{m^{2}}{\kappa^{2}(1-x)} - \frac{Q^{2}(1-x)}{4\kappa^{2}x}\right)}$$
 1.6

$$F_{\pi}^{E}(Q^{2}) = \int_{0}^{1} dx A^{2} e^{-\frac{\log(1/x)}{4\kappa^{2}} \left(Q^{2} + \frac{4m^{2}}{(1-x)^{2}}\right)} \qquad 0$$

0.4

S. R. Amendolia et al., Nucl. Phys. B277168 (1986) P. Braueln et al., Z. Phys. C 3,101 (1979) J. Volmer et al. Phys. Rev. Lett. 86 (2001), 1713 C. J. Bebek et al., Phys. Rev. D17, 1693 (1978)

LFWF	$m~({ m GeV})$	$\kappa ~({\rm GeV})$	$Q_0 ~({ m GeV})$	$\chi^2_{\rm d.o.f.} \left(\frac{\chi^2_{\rm FF} + \chi^2_{\rm PDF}}{N - N_{\rm par}} \right)$
$\psi^V_{q\overline{q}/\pi}$	0.005 (fixed) 0.200 (fixed) 0.0500 ± 0.00004	$\begin{array}{c} 0.397 \pm 0.003 \\ 0.351 \pm 0.003 \\ 0.371 \pm 0.002 \end{array}$	0.500 ± 0.003 0.491 ± 0.003 0.498 ± 0.002	$3.15 \\ 11.76 \\ 2.25$
$\psi^E_{q\overline{q}/\pi}$	0.005 (fixed) 0.200 (fixed) 0. (fixed)	$\begin{array}{c} 0.261 \pm 0.002 \\ 0.322 \pm 0.002 \\ 0.262 \pm 0.002 \end{array}$	0.498 ± 0.003 0.630 ± 0.008 0.498 ± 0.003	$5.44 \\ 12.96 \\ 5.38$

and the state

LFWF	$m~({ m GeV})$	$\kappa ~({\rm GeV})$	$Q_0~({ m GeV})$	$\chi^2_{\rm d.o.f.} \left(\frac{\chi^2_{\rm FF} + \chi^2_{\rm PDF}}{N - N_{\rm par}} \right)$
$\psi^V_{q\overline{q}/\pi}$	$0.005 \text{ (fixed)} \\ 0.200 \text{ (fixed)} \\ 0.0500 \pm 0.00004$	$\begin{array}{c} 0.397 \pm 0.003 \\ 0.351 \pm 0.003 \\ 0.371 \pm 0.002 \end{array}$	0.500 ± 0.003 0.491 ± 0.003 0.498 ± 0.002	$3.15 \\ 11.76 \\ 2.25$
$\psi^E_{q\overline{q}/\pi}$	0.005 (fixed) 0.200 (fixed) 0. (fixed)	$\begin{array}{c} 0.261 \pm 0.002 \\ 0.322 \pm 0.002 \\ 0.262 \pm 0.002 \end{array}$	$\begin{array}{c} 0.498 \pm 0.003 \\ 0.630 \pm 0.008 \\ 0.498 \pm 0.003 \end{array}$	5.44 12.96 5.38

and the state

LFWF	$m \; ({\rm GeV})$	$\kappa ~({ m GeV})$	$Q_0~({ m GeV})$	$\chi^2_{\rm d.o.f.} \left(\frac{\chi^2_{\rm FF} + \chi^2_{\rm PDF}}{N - N_{\rm par}} \right)$
$\psi^V_{q\overline{q}/\pi}$	$0.005 \text{ (fixed)} \\ 0.200 \text{ (fixed)} \\ 0.0500 \pm 0.00004$	$\begin{array}{c} 0.397 \pm 0.003 \\ 0.351 \pm 0.003 \\ 0.371 \pm 0.002 \end{array}$	0.500 ± 0.003 0.491 ± 0.003 0.498 ± 0.002	$3.15 \\ 11.76 \\ 2.25$
$\psi^E_{q\overline{q}/\pi}$	0.005 (fixed) 0.200 (fixed) 0. (fixed)	0.261 ± 0.002 0.322 ± 0.002 0.262 ± 0.002	0.498 ± 0.003 0.630 ± 0.008 0.498 ± 0.003	5.44 12.96 5.38

art and the

LFWF	$m~({\rm GeV})$	$\kappa ~({\rm GeV})$	$Q_0~({ m GeV})$	$\chi^2_{\rm d.o.f.} \left(\frac{\chi^2_{\rm FF} + \chi^2_{\rm PDF}}{N - N_{\rm par}} \right)$
$\psi^V_{q\overline{q}/\pi}$	$0.005 \text{ (fixed)} \\ 0.200 \text{ (fixed)} \\ 0.0500 \pm 0.00004$	$\begin{array}{c} 0.397 \pm 0.003 \\ 0.351 \pm 0.003 \\ 0.371 \pm 0.002 \end{array}$	0.500 ± 0.003 0.491 ± 0.003 0.498 ± 0.002	$\begin{array}{c} 3.15 \\ 11.76 \\ 2.25 \end{array}$
$\psi^E_{q\overline{q}/\pi}$	0.005 (fixed) 0.200 (fixed) 0. (fixed)	0.261 ± 0.002 0.322 ± 0.002 0.262 ± 0.002	0.498 ± 0.003 0.630 ± 0.008 0.498 ± 0.003	$5.44 \\ 12.96 \\ 5.38$

Value of K systematically lower than the one obtained from fitting the Regge trajectories, but necessary to have a good description of the PDF at higher scales

LFWF	$m~({ m GeV})$	$\kappa ~({\rm GeV})$	$Q_0~({ m GeV})$	$\chi^2_{\text{d.o.f.}} \left(\frac{\chi^2_{\text{FF}} + \chi^2_{\text{PDF}}}{N - N_{\text{par}}} \right)$
$\psi^V_{q\overline{q}/\pi}$	$0.005 \text{ (fixed)} \\ 0.200 \text{ (fixed)} \\ 0.0500 \pm 0.00004$	$\begin{array}{c} 0.397 \pm 0.003 \\ 0.351 \pm 0.003 \\ 0.371 \pm 0.002 \end{array}$	0.500 ± 0.003 0.491 ± 0.003 0.498 ± 0.002	$3.15 \\ 11.76 \\ 2.25$
$\psi^E_{q\overline{q}/\pi}$	0.005 (fixed) 0.200 (fixed) 0. (fixed)	0.261 ± 0.002 0.322 ± 0.002 0.262 ± 0.002	0.498 ± 0.003 0.630 ± 0.008 0.498 ± 0.003	$5.44 \\ 12.96 \\ 5.38$

- necessary to have a good description of the PDF at higher scales
- The Effective model provides a worse description overall

Value of K systematically lower than the one obtained from fitting the Regge trajectories, but

LFWF	$m~({ m GeV})$	$\kappa ~({ m GeV})$	$Q_0 ~({ m GeV})$	$\chi^2_{\rm d.o.f.} \left(\frac{\chi^2_{\rm FF} + \chi^2_{\rm PDF}}{N - N_{\rm par}} \right)$
$\psi^V_{q\overline{q}/\pi}$	0.005 (fixed) 0.200 (fixed) 0.0500 ± 0.00004	$\begin{array}{c} 0.397 \pm 0.003 \\ 0.351 \pm 0.003 \\ 0.371 \pm 0.002 \end{array}$	0.500 ± 0.003 0.491 ± 0.003 0.498 ± 0.002	$3.15 \\ 11.76 \\ 2.25$
$\psi^E_{q\overline{q}/\pi}$	0.005 (fixed) 0.200 (fixed) 0. (fixed)	0.261 ± 0.002 0.322 ± 0.002 0.262 ± 0.002	0.498 ± 0.003 0.630 ± 0.008 0.498 ± 0.003	5.44 12.96 5.38

- necessary to have a good description of the PDF at higher scales
- The Effective model provides a worse description overall
- Initial scale Q₀ =0.5 GeV is lower than the predictions of the LFH QCD (~I GeV)

Value of K systematically lower than the one obtained from fitting the Regge trajectories, but

LFWF	$m \; ({\rm GeV})$	$\kappa ~({\rm GeV})$	$Q_0 ~({ m GeV})$	$\chi^2_{\text{d.o.f.}} \left(\frac{\chi^2_{\text{FF}} + \chi^2_{\text{PDF}}}{N - N_{\text{par}}} \right)$
$\psi^V_{q\overline{q}/\pi}$	$0.005 \text{ (fixed)} \\ 0.200 \text{ (fixed)} \\ 0.0500 \pm 0.00004$	$\begin{array}{c} 0.397 \pm 0.003 \\ 0.351 \pm 0.003 \\ 0.371 \pm 0.002 \end{array}$	0.500 ± 0.003 0.491 ± 0.003 0.498 ± 0.002	$\begin{array}{c} 3.15 \\ 11.76 \\ 2.25 \end{array}$
$\psi^E_{q\overline{q}/\pi}$	0.005 (fixed) 0.200 (fixed) 0. (fixed)	0.261 ± 0.002 0.322 ± 0.002 0.262 ± 0.002	0.498 ± 0.003 0.630 ± 0.008 0.498 ± 0.003	5.44 12.96 5.38

- necessary to have a good description of the PDF at higher scales
- The Effective model provides a worse description overall
- Initial scale Q₀ = 0.5 GeV is lower than the predictions of the LFH QCD (~I GeV)
- later in the "Universal" model)

Value of K systematically lower than the one obtained from fitting the Regge trajectories, but

Problem with the Valence and Effective model in reproducing the pole structure of FF (solved

NOT IN THIS WORK: A UNIVERSAL LFWF FOR MESONS AND THE NUCLEONS

de Téramond, Liu, Sufian, Dosch, Brodsky, Deur (2018)

NOT IN THIS WORK: A UNIVERSAL LFWF FOR MESONS AND THE NUCLEONS

de Téramond, Liu, Sufian, Dosch, Brodsky, Deur (2018)

- The pole structure of the FF is restored;
- The K parameter describes correctly the Regge trajectories, the poles in the FF pole expansion correspond to the physical ones, and the smallx behavior of the PDF is modified;
- The authors find an analytical expression for the PDF and GPD which depends on a universal function.

TRANSVERSE STRUCTURE - MODEL SCALE

Physics Letters B 771 (2017) 546-552

No spin structure: only unpolarized TMD Spin effects constructions: Boer-Mulders TMD (Ahmady, Mondal, Sandapen, 2018-2019)

TRANSVERSE STRUCTURE - EVOLUTION

Physics Letters B 771 (2017) 546-552

Note: Evolution'details and prescriptions as in Bacchetta, Delcarro, Pisano, Radici, Signori, (2017)

TRANSVERSE STRUCTURE - EVOLUTION

Physics Letters B 771 (2017) 546-552

Note: Evolution'details and prescriptions as in Bacchetta, Delcarro, Pisano, Radici, Signori, (2017)

Position of the max and k_T-broadening after evolution

TRANSVERSE STRUCTURE - EVOLUTION

Physics Letters B 771 (2017) 546-552

Note: Evolution'details and prescriptions as in Bacchetta, Delcarro, Pisano, Radici, Signori, (2017)

art and the

- Effective LFWF.
- at the initial scale (0.5 GeV).
- order of magnitude.
- The Gaussian shape is lost after Evolution.
- compared to the model scale 0.5 GeV.

At the scale of the model (0.5 GeV), the TMD has a Gaussian shape for both Valence and

The mean square transverse momentum is symmetric around x=0.5 for the valence LFWF

TMD Evolution of the pion TMD, from the initial scale of 0.5 GeV to a typical experimental scale of 5 GeV, increases the width of the distributions in momentum space of almost one

The x-dependence of the transverse momentum width at 5 GeV changes drastically

THE QCD RUNNING COUPLING FROM ADS/QCD MODELS

 $\alpha_s(Q) = \begin{cases} \alpha_{\rm LFH}(Q) & Q \le Q_0\\ \alpha_{\overline{\rm MS}}(Q) & Q > Q_0, \end{cases}$

THE QCD RUNNING COUPLING FROM ADS/QCD MODELS

$$Q) = \begin{cases} \alpha_{\rm LFH}(Q) & Q \le Q_0 \\ \alpha_{\overline{\rm MS}}(Q) & Q > Q_0, \end{cases}$$

$$FH(Q^2) = \alpha_{\rm LFH}(0)e^{-Q^2/4\kappa^2}$$

ntinuity condition:
$$\begin{cases} \alpha_{\rm LFH}(Q_0) = \alpha_{\overline{\rm MS}}(Q_0) \\ \beta_{\rm LFH}(Q_0) = \beta_{\overline{\rm MS}}(Q_0), \end{cases}$$

THE QCD RUNNING COUPLING FROM ADS/QCD MODELS

$$Q) = \begin{cases} \alpha_{\rm LFH}(Q) & Q \leq Q_0 \\ \alpha_{\overline{\rm MS}}(Q) & Q > Q_0, \end{cases}$$

FH
$$(Q^2) = \alpha_{\text{LFH}}(0)e^{-Q^2/4\kappa^2}$$

ntinuity condition:

$$\begin{cases} \alpha_{\text{LFH}}(Q_0) = \alpha_{\overline{\text{MS}}}(Q_0) \\ \beta_{\text{LFH}}(Q_0) = \beta_{\overline{\text{MS}}}(Q_0), \end{cases}$$

• The matching with the \overline{MS} scheme with $\kappa = 0.51 \,\mathrm{GeV}$ gives $Q_0^2 = 0.75 \,\mathrm{GeV}^2$ (black line)

$$\alpha_s(Q) = \begin{cases} \alpha_{\rm LFH}(Q) & Q \leq Q_0 \\ \alpha_{\overline{\rm MS}}(Q) & Q > Q_0, \end{cases}$$

Relaxed continuity condition:

 $\alpha_{\rm LFH}(Q_0) = \alpha_{\overline{\rm MS}}(Q_0)$

$$\alpha_s(Q) = \begin{cases} \alpha_{\rm LFH}(Q) & Q \leq Q_0 \\ \alpha_{\overline{\rm MS}}(Q) & Q > Q_0, \end{cases}$$

Relaxed continuity condition:

$$\alpha_{\rm LFH}(Q_0) = \alpha_{\overline{\rm MS}}(Q_0)$$

Imposing the continuity of both α and the derivative β at the transition point Q_0 is too rigid for our approach.

$$\alpha_s(Q) = \begin{cases} \alpha_{\rm LFH}(Q) & Q \le Q_0 \\ \alpha_{\overline{\rm MS}}(Q) & Q > Q_0, \end{cases}$$

Relaxed continuity condition:

 $\alpha_{\rm LFH}(Q_0) = \alpha_{\overline{\rm MS}}(Q_0)$

Imposing the continuity of both α and the derivative β at the transition point Q_0 is too rigid for our approach.

Fixing by hand the value of $Q_0 \sim I$ in our fit greatly deteriorates the results on the PDF

$$\alpha_s(Q) = \begin{cases} \alpha_{\rm LFH}(Q) & Q \le Q_0\\ \alpha_{\overline{\rm MS}}(Q) & Q > Q_0, \end{cases}$$

Relaxed continuity condition:

 $\alpha_{\rm LFH}(Q_0) = \alpha_{\overline{\rm MS}}(Q_0)$

Imposing the continuity of both α and the derivative β at the transition point Q_0 is too rigid for our approach.

Fixing by hand the value of $Q_0 \sim I$ in our fit greatly deteriorates the results on the PDF

K=0.37 GeV gives a range which is compatible with previous works

SUMMARY AND CONCLUSIONS

- We study two functional forms of pion LFWFs from LF Holographic models, with minimal modifications
- We fix the free parameters of the LFWFs using the experimental information of PDF and FF (possible to update this part with the new data)
- We obtain a predictions on the pion TMD (dependence on the non perturbative parameters used);
- We test the matching between the perturbative and non-perturbative physics deriving from this approach
- Possible update: use the new available and forthcoming data on PDF to improve the study.

