3－DIMENSIONAL IMAGING OF PION AND KAON ONTHE LIGHT FRONT

－based on DSEs study

Chao Shi
Nanjing University of Aeronautics and Astronautics（NUAA）

3-D imaging: GPDs \& TMDs

Wigner Distributions

GPDs

©1-D correlation function \& Collinear parton distribution functions

$$
\phi_{i j}(x)=\left.\frac{1}{2} \int \frac{d z^{-}}{2 \pi} e^{i x P^{+} z^{-}}\langle P| \bar{\psi}_{j}(0) \psi_{i}(z)|P\rangle\right|_{z^{+}=z_{\perp}=0} \longrightarrow\left[\phi_{i j} \gamma^{+}\right]=f(x)
$$

©3-D correlation function \& GPD

$$
\begin{aligned}
& \phi_{i j}\left(x, \xi, \Delta^{2}\right)=\left.\frac{1}{2} \int \frac{d z^{-}}{2 \pi} e^{i x P^{+} z^{-}}\left\langle P-\frac{\Delta}{2}\right| \bar{\psi}_{i}(0) \psi_{j}(z)\left|P+\frac{\Delta}{2}\right\rangle\right|_{z^{+}=z_{\perp}=0} \\
& {\left[\phi_{i j} \gamma^{+}\right]=\frac{1}{2 P^{+}}\left[H^{q}(x, \xi, t) \bar{u}\left(P+\frac{\Delta}{2}\right) \gamma^{+} u\left(P-\frac{\Delta}{2}\right)+\ldots\right]}
\end{aligned}
$$

© GPDs

Factorization GPDS
AM(Ji 1997)

Deeply virtual Compton scattering
IPD GPD (Burkardt 2000)

TMD PDFs

OThe TMD correlation function

$$
\Phi_{i j}\left(x, \boldsymbol{k}_{\perp}, S\right)=\left.\int \frac{\mathrm{d} z^{-} \mathrm{d}^{2} \boldsymbol{z}_{\perp}}{(2 \pi)^{3}} e^{i\left(k^{+} z_{-}-\boldsymbol{k}_{\perp} \cdot \boldsymbol{z}_{\perp}\right)}\langle P, S| \bar{\psi}_{j}(0) \psi_{i}(z)|P, S\rangle\right|_{z^{+}=0}
$$

©The TMD PDFs (leading twist)

$$
\begin{aligned}
\Phi\left(x, \boldsymbol{k}_{\perp}, S\right)= & \frac{1}{2}\left\{f_{1} \not h_{+}-f_{1 T}^{\perp} \frac{\epsilon_{T}^{i j} \boldsymbol{k}_{\perp}^{i} S_{\perp}^{j}}{M} h_{+}+\Lambda g_{1 L} \gamma_{5} \not h_{+}+\frac{\left(\boldsymbol{k}_{\perp} \cdot \boldsymbol{S}_{\perp}\right)}{M} g_{1 T} \gamma_{5} \not h_{+}+h_{1 T} \frac{\left[\mathscr{S}_{\perp}, \not h_{+}\right]}{2} \gamma_{5}\right. \\
& \left.+\Lambda h_{1 L}^{\perp} \frac{\left[k_{\perp}, \not h_{+}\right]}{2 M} \gamma_{5}+\frac{\left(\boldsymbol{k}_{\perp} \cdot \boldsymbol{S}_{\perp}\right)}{M} h_{1 T}^{\perp} \frac{\left[k_{\perp}, h_{+}\right]}{2 M} \gamma_{5}+i h_{1}^{\perp} \frac{\left[k_{\perp}, h_{+}\right]}{2 M}\right\}
\end{aligned}
$$

Nonperturbative QCD

$$
\begin{aligned}
\mathcal{L}_{\mathrm{QCD}} & =\bar{q}_{i} \gamma^{\mu}\left(i \partial_{\mu}-g_{s} t^{a} A_{\mu}^{a}-m_{i}\right) q_{i}-\frac{1}{4} F_{\mu \nu}^{a} F^{a \mu \nu} \\
F_{\mu \nu}^{a} & =\partial_{\mu} A_{\nu}^{a}-\partial_{\nu} A_{\mu}^{a}-g_{s} f^{a b c} A_{\mu}^{b} A_{\nu}^{c} \quad \alpha_{s}=\frac{g_{s}^{2}}{4 \pi}
\end{aligned}
$$

Calculation

Nonperturbative QCD methods

1. $A D S / Q C D$

2. Dyson-Schwinger equations.
3. Effective theories and models, e.g., NJL model...
4. Light front QCD.
5. Lattice QCD. etc...

Transverse momentum dependent distributions (TMD) 3-D tomography in the momentum space.

Generalized parton distributions (GPD)
3-D picture of hadrons in the mixed spatial-momentum space.

DSE \& symmetry preserving

© The Pion\&Kaon wave function can be solved by aligning the quark DSE and hadron BSE.

©To solve these equations, truncation is needed for the vertex and scattering kernel. A physically reasonable truncation scheme should respect QCD's (nearly) chiral symmetry, namely, the Axial-Vector Ward-Takahashi Identity

©The simplest manifestation is the Rainbow-Ladder truncation

Beyond Rainbow-Ladder

©lnhomogeneous BSE

$$
\begin{aligned}
& \Gamma_{5 \mu}(k ; P)=Z_{2} \gamma_{5} \gamma_{\mu} \\
& \quad-Z_{2} \int_{d q} \mathcal{G}(k-q) D_{\rho \sigma}^{\mathrm{free}}(k-q) \frac{\lambda^{a}}{2} \gamma_{\alpha} S\left(q_{+}\right) \times \Gamma_{5 \mu}(q ; P) S\left(q_{-}\right) \frac{\lambda^{a}}{2} \tilde{\Gamma}_{\beta}\left(q_{-}, k_{-}\right) \\
& \quad+Z_{1} \int_{d q} g^{2} D_{\alpha \beta}(k-q) \frac{\lambda^{a}}{2} \gamma_{\alpha} S_{f}\left(q_{+}\right) \times \frac{\lambda^{a}}{2} \Lambda_{5 \mu \beta}(k, q ; P)
\end{aligned}
$$

When $P^{2} \rightarrow-m_{\pi}^{2}, \Gamma_{5 \mu}^{j}(k ; P) \sim \frac{r_{A} P_{\mu}}{P^{2}+m^{2}} \Gamma_{\pi}^{j}(k ; P) \quad$ (Lei Chang et al, PRL2009)
© Beyond-RL kernel

$$
\begin{aligned}
& \Gamma_{\mu}\left(p_{1}, p_{2}\right)=\Gamma_{\mu}^{\mathrm{BC}}\left(p_{1}, p_{2}\right)+\Gamma_{\mu}^{\mathrm{acm}}\left(p_{1}, p_{2}\right) \quad \text { (Lei Chang et al, } \mathrm{F} \\
& 2 \Lambda_{5 \beta(\mu)}=\left[\tilde{\Gamma}_{\beta}\left(q_{+}, k_{+}\right)+\gamma_{5} \tilde{\Gamma}_{\beta}\left(q_{-}, k_{-}\right) \gamma_{5}\right] \times \frac{1}{S^{-1}\left(k_{+}\right)+S^{-1}\left(-k_{-}\right)} \Gamma_{5(\mu)}(k ; P) \\
&+ \Gamma_{5(\mu)}(q ; P) \frac{1}{S^{-1}\left(-q_{+}\right)+S^{-1}\left(q_{-}\right)} \times\left[\gamma_{5} \tilde{\Gamma}_{\beta}\left(q_{+}, k_{+}\right) \gamma_{5}+\tilde{\Gamma}_{\beta}\left(q_{-}, k_{-}\right)\right]
\end{aligned}
$$

©The study of pion and kaon is well established in DSEs. There is no more parameter for tuning. TMDs and GPDs pose a new challenge.

TMDs \& GPDs: Light-front approach

DSEs:

LFQCD:

Light front wave functions + overlap representation
TMD \& GPD

BSE approach to LFWF

(1)To calculate the LFWFs, the standard way is to diagonalize the light-cone Hamiltonian. However, this is very challenging in QCD. In practice, light-cone Hamiltonian models are employed (light-front potential, holographic QCD, NJL model....)
(1)An alternative way to calculate the LFWFs.
"...he ('t Hooft) did not use the light-cone formalism and which nowadays might be called standard. Instead, he started from covariant equations... The light-cone Schrodinger equation was then obtained by projecting the Bethe-Salpeter equation onto hyper-surfaces of equal light-cone time. In this way, one avoids to explicitly derive the light-cone Hamiltonian, which, as explained above, can be a tedious enterprise in view of complicated constraints one has to solve..." (Thomas Heinzl)

What we do: solve the BS equation first and then project the BS wave functions onto the light front!
©A synergy between Lagrangian formalism (DSE) and Hamiltonian formalism (LF QCD).
Advantage: In the DSEs, one can selectively sum infinitely many diagrams (which potentially incorporates many higher Fock states) and conveniently preserves the symmetries of the Lagrangian.

LFWFs \& Bethe-Salpeter wave function

©Fock state \& LFWFs

LFWFs

$$
\begin{aligned}
\left|\pi^{+}(P)\right\rangle & =\left|\pi^{+}(P)\right\rangle_{l_{z}=0}+\left|\pi^{+}(P)\right\rangle_{\left|l_{z}\right|=1} \\
\left|\pi^{+}(P)\right\rangle_{l_{z}=0} & =i \int \frac{d^{2} k_{\perp}}{2(2 \pi)^{3}} \frac{d x}{\sqrt{x \bar{x}}} \psi_{0}\left(x, k_{\perp}^{2}\right) \frac{\delta_{i j}}{\sqrt{3}} \frac{1}{\sqrt{2}}\left[b_{u \uparrow i}^{\dagger}\left(x, k_{\perp}\right) d_{d \downarrow j}^{\dagger}\left(\bar{x}, \bar{k}_{\perp}\right)-b_{u \downarrow i}^{\dagger}\left(x, k_{\perp}\right) d_{d \uparrow j}^{\dagger}\left(\bar{x}, \bar{k}_{\perp}\right)\right]|0\rangle, \\
\left|\pi^{+}(P)\right\rangle_{\left|l_{z}\right|=1} & =i \int \frac{d^{2} k_{\perp}}{2(2 \pi)^{3}} \frac{d x}{\sqrt{x \bar{x}}} \psi_{1}\left(x, k_{\perp}^{2}\right) \frac{\delta_{j} \gamma}{\sqrt{3}} \frac{1}{\sqrt{2}}\left[k_{\perp}^{-} b_{u \uparrow i}^{\dagger}\left(x, k_{\perp}\right) d_{d \uparrow j}^{\dagger}\left(\bar{x}, \bar{k}_{\perp}\right)+k_{\perp}^{+} b_{u \downarrow i}^{\dagger}\left(x, k_{\perp}\right) d_{d \downarrow j}^{\dagger}\left(\bar{x}, \bar{k}_{\perp}\right)\right]|0\rangle,
\end{aligned}
$$

©BS WFs \& LFWFs

$$
\begin{aligned}
\langle 0| \bar{d}_{+}(0) \gamma^{+} \gamma_{5} u_{+}\left(\xi^{-}, \xi_{\perp}\right)\left|\pi^{+}(P)\right\rangle & =i \sqrt{6} P^{+} \psi_{0}\left(\xi^{-}, \xi_{\perp}\right) \\
\langle 0| \bar{d}_{+}(0) \sigma^{+i} \gamma_{5} u_{+}\left(\xi^{-}, \xi_{\perp}\right)\left|\pi^{+}(P)\right\rangle & =-i \sqrt{6} P^{+} \partial^{i} \psi_{1}\left(\xi^{-}, \xi_{\perp}\right)
\end{aligned}
$$

(M. Burkardt et al, PLB 2002)
©LFWFs \& BS wave function:
Realistic BS wave function

Project on to the light front (light front time $\xi^{+}=0$)

$$
\begin{aligned}
\psi_{0}\left(x, \boldsymbol{k}_{T}^{2}\right)= & \sqrt{3} i \int \frac{d k^{+} d k^{-}}{2 \pi} \\
& \times \operatorname{Tr}_{D}\left[\gamma^{+} \gamma \boxed{\chi(k, p)]} \delta\left(x p^{+}-k^{+}\right)\right. \\
\psi_{1}\left(x, \boldsymbol{k}_{T}^{2}\right)= & -\sqrt{3} i \int \frac{d \mathbf{k}^{+} d k^{-} \frac{1}{2}}{2 \pi} \boldsymbol{k}_{T}^{2} \\
& \times \operatorname{Tr}_{D}\left[i \sigma_{+i} \boldsymbol{k}_{T}^{i} \gamma 5 \chi(k, p)\right] \\
& \delta\left(x p^{+}-k^{+}\right)
\end{aligned}
$$

(C. Mezrag et al, FBSY 2016)

LFWFs: $\psi_{0}\left(x, k_{\perp}^{2}\right) \& \psi_{1}\left(x, k_{\perp}^{2}\right)$
parallel) are comparable in strength, suggesting the spin parallel component also has considerable contribution. Highly relativistic system.
© Strong support at infrared kT , a consequence of the DCSB which generates significant strength in the infrared of BS wave function.
©At ultraviolet of k , $\psi 0$ scale as $1 / \mathrm{k} T^{2}$ and $\psi 1$ scale as $1 / k T^{4}$, as has been predicted by pQCD. (one-gluon exchange dominance.)
©SU(3) flavor symmetry breaking effect: u / d and s quark mass difference masked by DCSB.

FIG. 2. Pion's spin-anti-parallel LFWF $\psi_{0}\left(x, \boldsymbol{k}_{T}^{2}\right)$ at different values of \boldsymbol{k}_{T}^{2}, normalized to $\psi_{0}^{N}\left(x, \boldsymbol{k}_{T}^{2}\right)=\frac{\psi_{0}\left(x, \boldsymbol{k}_{T}^{2}\right)}{\int_{0}^{1} d x \psi_{0}\left(x, \boldsymbol{k}_{T}^{2}\right)}$.

Unpolarized TMD PDF

©TMD overlap representation

$$
f_{1, \pi}\left(x, \mathbf{k}_{\perp}^{2}\right)=\left|\psi_{\uparrow \downarrow}\left(x, k_{\perp}^{2}\right)\right|^{2}+k_{\perp}^{2}\left|\psi_{\uparrow \uparrow}\left(x, k_{\perp}^{2}\right)\right|^{2}
$$

FIG. 7. The unpolarized TMD $f_{1 ; \pi}^{d}\left(x, \boldsymbol{k}_{T}^{2}\right)$ of pion (upper panel) and $f_{1 ; K}^{s}\left(x, \boldsymbol{k}_{T}^{2}\right)$ of kaon (lower panel).

DSE \& LF

Significant strength at low kT , resembles Gaussian-like form.

The TMD of kaon is slightly broader than pion.
Smoother as compared to holographic QCD.

Holographic QCD(A Bacchetta, et al, PLB2017)

TMD evolution

©The TMD evolution is more conveniently done in coordinate space.

Renormalization group (RG) equation:

$$
\begin{array}{rlr}
\mu^{2} \frac{d}{d \mu^{2}} F_{f \leftarrow h}(x, \vec{b} ; \mu, \zeta) & =\frac{1}{2} \gamma_{F}^{f}(\mu, \zeta) F_{f \leftarrow h}(x, \vec{b} ; \mu, \zeta) & \text { Anomalous Dimension } \\
\zeta \frac{d}{d \zeta} F_{f \leftarrow h}(x, \vec{b} ; \mu, \zeta) & =-\mathcal{D}^{f}(\mu, \vec{b}) F_{f \leftarrow h}(x, \vec{b} ; \mu, \zeta) . & \begin{array}{l}
\text { TMD PDF in the } \\
\text { coordinate space }
\end{array}
\end{array}
$$

The scale μ is the standard RG scale, with the additional rapidity factorization scale ζ to regularize the light-cone divergence arising from Wilson lines. They were usually chosen to be the same order of scattering scale.

Solution:

$$
F_{f \leftarrow h}\left(x, \vec{b} ; \mu_{f}, \zeta_{f}\right)=\exp \left[\int_{P}\left(\gamma_{F}^{f}(\mu, \zeta) \frac{d \mu}{\mu}-\mathcal{D}^{f}(\mu, \vec{b}) \frac{d \zeta}{\zeta}\right)\right] F_{f \leftarrow h}\left(x, \vec{b} ; \mu_{i}, \zeta_{i}\right)
$$

TMD evolution:

Figure 2. U'pper panel. DSE result using the DCSB-improved kerrel for the time-reversal even t-quark TMD of the pion, $f_{\Omega}^{u}\left(x, k_{T}^{2}\right)$, at the rodel scale of $\mu_{1}^{\hat{a}}=0.52 \mathrm{GcV}^{2}$. Lower panel: Analogous result cvolved to a seale of $\mu=6 \mathrm{GcV}$ using TMD cvolution with the b^{+} preseription end $g_{2}=0.09 \mathrm{GeV}$ [43]. The TMDs are given in units of GeV^{-2} and k_{r}^{2} in GeV^{2}.

\& Evolution leads broader k_{T}.
8 The evolved TMD PDF at smaller x is significantly broader than that at large x (Non-factorizable x and k_{T} dependence).

Drell-Yan Process

Experiment (E615)

Transverse momentum dependence parameterized by function $P\left(q T ; x F, m_{\mu} \mu\right)$

$$
\begin{array}{ll}
d^{3} \sigma \\
d x_{\pi} d x_{N} d q_{T} & =\frac{d^{2} \sigma}{d x_{\pi} d x_{N}} P\left(q_{T} ; x_{F}, m_{\mu \mu}\right) .
\end{array} \begin{aligned}
& q^{0}=\frac{\sqrt{s}}{2}\left(x_{\pi}+x_{N}\right) \\
& q^{3}=\frac{\sqrt{3}}{2}\left(x_{\pi}-x_{N}\right)
\end{aligned}
$$

"Experimental study of muon pairs produced by $252-\mathrm{GeV}$ pions on tungsten", Conway, J.S. et al. Phys.Rev. D39 (1989) 92-122.

Theory

$$
\frac{d^{3} \sigma}{d x_{\pi} d x_{N} d q_{T}} \propto\left|q_{T}\right| F_{u u}^{1}\left(x_{\pi}, x_{N}, q_{T}\right)
$$

(leading twist)
TMD formalism: $F_{U U}^{1}\left(x_{1}, x_{2}, q_{T}\right)=\frac{1}{N_{c}} \sum_{a} e_{a}^{2} \int d^{2} \boldsymbol{k}_{1 \perp} d^{2} \boldsymbol{k}_{2 \perp} \delta^{(2)}\left(\boldsymbol{q}_{T}-\boldsymbol{k}_{1 \perp}-\boldsymbol{k}_{2 \perp}\right) f_{1, \pi}^{\bar{a}\left(x_{1}, \boldsymbol{k}_{1 \perp}^{2}\right) f_{1, N}^{a}\left(x_{2}, \boldsymbol{k}_{2 \perp}^{2}\right)}$

Examine: $P\left(q_{T} ; x_{F}, m_{\mu \mu}\right) \propto\left|q_{T}\right| F_{U U}^{1}\left(q_{T} ; x_{F}, \tau\right)$

E615:

(C.S. et al, PRL2019)

The fitting function $P\left(q_{T} ; x_{F}, m_{\mu \mu}\right) / q_{T}$ at $x_{F}=0.0$ (red solid), 0.25 (green solid) and 0.5 (blue solid). The band colored bands are our results based on b*-prescription, with upper boundary corresponding to $g_{2}=0.09$ and lower boundary for $g_{0}=0.0$. The dashed lines are obtained following ζ-prescription where g_{2} is found to be consistent with zero at NNLL/NNLO.

Our results using two evolution schemes generally agree with E615 measurement. In particular, when the non-perturbative Sudakov factor goes to zero as suggested by ζ prescription at higher order. (The deviation is less than 10% for $\mathrm{x}_{\mathrm{F}}=0$ and 0.25 , and increases to 30% at most for $\mathrm{x}_{\mathrm{F}}=0.5$.) Alessandro Bacchetta, et al, JHEP2017

Alexey Vladimirov, et al, EPJC2018
$\$$ Deviation grows as x_{F} goes larger, TMD formalism less valid.

GPD: overlap representation

©At leading twist, the pion has one GPD:

$$
H_{\pi}^{q}(x, \xi, t)=\left.\frac{1}{2} \int \frac{d z^{-}}{2 \pi} e^{i x P^{+} z^{-}}\left\langle p_{2}\right| \bar{\psi}^{q}\left(-\frac{z}{2}\right) \gamma^{+} \psi^{q}\left(\frac{z}{2}\right)\left|p_{1}\right\rangle\right|_{z^{+}=z_{\perp}=0}
$$

©There are two regions, ERBL $(|x|<|\xi|)$ and DGLAP $(|x|>|\xi|)$ region, named after their evolution in limiting cases

IPD GPD

GPD at zero skewness $\mathrm{H}(\mathrm{x}, \xi=0, \Delta)$

Fourier Transform

Impact Parameter Dependent GPD $\rho(x, b T)$

Probability density interpretation
x : longitudinal momentum fraction
bT: transverse spatial separation $\sim(1-x)\left(r^{1} T_{T}-r^{2}{ }_{T}\right)$

All distributions peek at the center of impact parameter (note the plot has been multiplied with bT)

- heavier s quark is more localized as compared to light u/d quark by ~20\%.
Valence distribution $\rho^{(0)}\left(b_{T}\right)=\rho_{q}^{(0)}\left(b_{T}\right)-\rho_{\bar{q}}^{(0)}\left(b_{T}\right)$ is scale-independent, as $\mathrm{H}(\mathrm{x}, 0, \Delta \mathrm{~T})$ evolution is independent of ΔT.

EMFF

©EMFF is the Zero-th moment of GPD

$$
F_{M}(t)=\int_{-1}^{1} d x\left[e_{u} H_{M}^{u}(x, \xi, t)+e_{d} H_{M}^{d}(x, \xi, t)\right]
$$

© But the curve generally overshoots the data. No such problem for a covariant calculation (with conventional Feynman diagram). Essentially a problem from Fock state truncation.
© A hidden ERBL region is found in NJL model.

$H_{d}^{\prime}(x, 0, t)=H_{d}(x, 0, t)+\delta(x) \tilde{F}_{\rho}(t) \int_{-1}^{1} d y H_{I=1}(y, 0, t)$,

$$
\delta(x):|x|<|\xi| \text { as }|\xi| \rightarrow 0
$$

The first term of bare vertex leads to DGLAP contribution.

The rest (infinitely many) dressing diagrams lead to the hidden ERBL contribution.

Gravitational Form Factor

GFF: $\quad\left\langle\pi^{+}\left(p^{\prime}\right)\right| \Theta^{\mu \nu}(0)\left|\pi^{+}(p)\right\rangle=\frac{1}{2}\left[P^{\mu} P^{\nu} \Theta_{2}(t)+\left(g^{\mu \nu} q^{2}-q^{\mu} q^{\nu}\right) \Theta_{1}(t)\right]$.

GPD x-moments:
EMT $\Theta^{\mu \nu}=\sum_{q=u, d \ldots} \bar{q}(x)\left(\gamma^{\mu} \partial^{\nu}+\gamma^{\nu} \partial^{\mu}\right) q(x)+($ gluons $)$

$$
\begin{gathered}
\int_{-1}^{1} d x x H^{\prime q}(x, 0, t)=A_{2,0}^{q}(t) \\
A_{2,0}^{q}(t)=\frac{1}{2} \Theta_{1}^{q}(t)
\end{gathered}
$$

OThe hidden ERBL region doesn't contribute to GFF.0.05

$H_{d}^{\prime}(x, 0, t)=H_{d}(x, 0, t)+\delta(x) \tilde{F}_{\rho}(t) \int_{-1}^{1} d y H_{I=1}(y, 0, t)$,
(C.S. et al, PRD2020)
-t $\left(\mathrm{GeV}^{2}\right)$

	EMFF	GFF	TMD PDF	IPD GPD
Contribute:	Yes	No	No	No

A universal description within leading LFWFs truncation.

Conclusions

©LFWFs can be obtained from Bethe-Salpeter wave functions, rendering a variety of light front distributions calculable.
© In a realistic calculation, the spin-parallel LFWF of pion and kaon contributes considerably, exhibiting a highly relativistic system. Less contribution for heavy quark system (in preparation).

- Existing data can be described using realistic leading Fock state LFWFs.
©Many more to explore with DSEs.

