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3-D imaging: GPDs & TMDs
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GPDs

@1-D correlation function & Collinear parton distribution functions
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©3-D correlation function & GPD
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Factorization G PDs

Deeply virtual Compton scattering

IPD GPD (Burkardt 2000)



TMD PDFs

©@The TMD correlation function
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©@The TMD PDFs (leading twist)
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~3-D momentum distribution and spin-orbit
correlations.

~The sign change of Sivers and Boer-
Mulders functions in SIDIS and Drell-Yan is
a fundamental test for QCD.

(Collins, PLB 2002)




Nonperturbative QCD
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- Nonperturbative QCD D

ﬂ 1. ADS/QCD
2. Dyson-Schwinger equations.
3. Effective theories and models, e.g., NJL model...
4. Light front QCD.

5. Lattice QCD.

Calculation




DSE & symmetry preserving

©@The Pion&Kaon wave function can be solved by aligning the quark DSE and hadron BSE.
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@ To solve these equations, truncation is needed for the vertex and scattering kernel. A

physically reasonable truncation scheme should respect QCD's (nearly) chiral symmetry,
namely, the Axial-Vector Ward-Takahashi ldentity
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@ The simplest manifestation is the Rainbow-Ladder truncation




Beyond Rainbow-Ladder

®Inhomogeneous BSE

s, (k; P) = 22754
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®Beyond-RL kernel
I'L(p1,p2) = FEC(plaPQ) + 7" (p1, p2) ( Lei Chang et al, PRL2011,PRC2012)
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©@The study of pion and kaon is well established in DSEs. There is no more parameter for
tuning. TMDs and GPDs pose a new challenge.



TMDs & GPDs: Light-front approach

DSEs: >—‘>—
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./ LFQCD:

Light front wave functions + overlap representation
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BSE approach to LFWF

@To calculate the LFWFs, the standard way is to diagonalize the light-cone Hamiltonian.
However, this is very challenging in QCD. In practice, light-cone Hamiltonian models are
employed (light-front potential, holographic QCD, NJL model....)

©@An alternative way to calculate the LFWFs.

"...he ('t Hooft) did not use the light—-cone formalism and which nowadays might be
called standard. Instead, he started from covariant equations... The light-cone
Schrodinger equation was then obtained by projecting the Bethe-Salpeter
equation onto hyper-surfaces of equal light-cone time. In this way, one avoids to
explicitly derive the light-cone Hamiltonian, which, as explained above, can be a
tedious enterprise in view of complicated constraints one has to solve..." (Thomas
Heinzl)

What we do: solve the BS equation first and then project the BS wave
functions onto the light front!

©A synergy between Lagrangian formalism (DSE) and Hamiltonian formalism (LF QCD).

Advantage: In the DSEs, one can selectively sum I~ )
infinitely many diagrams (which potentially incorporates - C' e |
many higher Fock states) and conveniently preserves ‘\— /}{d

the symmetries of the Lagrangian. AN 2
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LFWFs & Bethe-Salpeter wave function

©Fock state & LFWFs LFWFs
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©BS WFs & LFWFs

(Ol (0)y y5u (€7, €0) | T (P)) = ivV6P o (€7,€L),

_ . _ . (M. Burkardt et al, PLB 2002)
(0ld1(0)o M y5uy (67, €0) |7 (P)) = —ivV6PT 81 (£7,€L).

OLFWFs & BS wave function: Realistic BS wave function
Yo(x, k% = V3i
Project on to the light front xTrp |y ofxp" - k"),
: - r
(light front time &+ =0) b (x, k2) = _\/31./

X Trp [i0'+ik§~ Y+

KD -4

(C. Mezrag et al, FBSY 2016)
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LFWFs: vo(z,k2) & (2, k?)

spin-antiparallel spin-parallel

] ) . . . . ‘l/)(,(.l',":')‘) -1/),(1‘#'-)
©@O0btained from parameterized realistic ' '

BS wave functions. ]
O@Y0 (spin-antiparallel) and 1 (spin- Plon
parallel) are comparable in strength,
suggesting the spin parallel component

also has considerable contribution.
Highly relativistic system. kaon
©®Strong support at infrared kT, a
consequence of the DCSB which
generates significant strength in the
infrared of BS wave function.

WAt ultraviolet of KT, V0 scale as 1/kT2

and V1 scale as 1/kT4, as has been
predicted by pQCD. (one-gluon

exchange dominance.)

OSU3) flavor symmetry breaking effect:
u/d and s quark mass difference . 2 04 06 08 1.0
masked by DCSB. X

FIG. 2. Pion’s spin-anti-parallel LFWF ¢y(x, k%) at different
¢0(x’k%) .
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Unpolarized TMD PDF

@ TMD overlap representation
fra(e, k1) = |y (@, k1) 2 + kT [ (2, k1)

_ Significant strength at low kT | resembles
o 025 050 075 10 Gaussian-like form.

. The TMD of kaon is slightly broader than pion.

Y

LXSX

. Smoother as compared to holographic QCD.

N\

NS

1 (x,k2)[GeV?

FIG. 7. The unpolarized TMD fl“_’”(x, k%) of pion (upper
panel) and f7 . (x, k%) of kaon (lower panel).

-

DSE & LF Holographic QCD(A Bacchetta, et al, PLB2017)
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TMD evolution

©@The TMD evolution is more conveniently done in coordinate space.

Renormalization group (RG) equation:
d

.
H ﬂFfeh(x b; 145 G 26F [y G f<—h(33 b, 1y G
TMD PDF in the
C CFf<_h X, b ,u, Df ,u, f<—h €, b lu7 coordinate space

The scale p is the standard RG scale, with the additional rapidity factorization scale C to
regularize the light-cone divergence arising from Wilson lines. They were usually chosen to
be the same order of scattering scale.

Solution:

R d
Frn(wBing,¢p) = ool | (0.0 =D (.

F(— bwz
i . C)]fh(ﬂj fi, Gi)
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TMD evolution:
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Figure 2. Upper panel; DSE result using the DCSB-improved kerne!l
for the time-reversal cven w-gaark TMD of the pion, £¥(x, kf- ), at
the model scale of p‘; = 0.52GeV?. Lower panei: Anzlogous result
evolved to a scale of y = 6 GeV using TMD cvolution with the b*
prescription znd gy = 0.09GeV [43]. The TMDs arc given in units of
Gev=2 nnd k2 in GeV=.
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Longitudinal momentum partons
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¢ Evolution leads broader kr.

¢ The evolved TMD PDF at smaller x is
significantly broader than that at large x
(Non-factorizable x and kt dependence).
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Drell-Yan Process

Experiment (E615)

Transverse momentum dependence parameterized by function P(gT;xF mﬂ u \/)

o Po_ \ 7' = g (@t aw)
P qr; TF, M
dx dx ndqr didemN ML ¢* = ?(SEW —ZN)

"Experimental study of muon pairs produced by 252-GeV pions on tungsten", Conway, J.S. et al.
Phys.Rev. D39 (1989) 92-122.

TMD formalism: F}(z1,22,q1) = Z /d2k1j_d ko 0 (qp — k1) — ku)g_ (961,"‘:}@,1\7(:62,/633-

d3o

d:r:wda: NAdgr

< |qr|Fyt, (Tr, N, qT) (leading twist)

P

offered by DSEs&evolution borrow from global analysis
¥
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(C.S. et al, PRL2019)

- ] gr
0.0 0.5 1.0 1.5 2.0

The fitting function P(qr;zr, mu,)/qr at p = 0.0 (red solid), 0.25 (green
solid) and 0.5 (blue solid). The band colored bands are our results based on
b*-prescription, with upper boundary corresponding to go = 0.09 and lower
boundary for go = 0.0. The dashed lines are obtained following (-prescription
where go is found to be consistent with zero at NNLL/NNLO.

¢ Our results using two evolution schemes generally agree with E615 measurement. In
particular, when the non-perturbative Sudakov factor goes to zero as suggested by C-
prescription at higher order. (The deviation is less than 10%for xp =0 and 0.25, and

increases to 30% at most for xg =0.5.) Alessandro Bacchetta, et al, JHEP2017
Alexey Vladimirov, et al, EPJC2018

¢ Deviation grows as xp goes larger, TMD formalism less valid.
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GPD: overlap representation

At leading twist, the pion has one GPD:
dz™ iz P™T

1
Hﬁ.(x,ﬁ,t)=§ %6 4 <p2|¢q(__) +¢q( )‘p1>|z+=2¢—0

@There are two regions, ERBL (|x|<[€|]) and DGLAP (|x|>|€|) region, named after their evolution in
limiting cases

- // | \‘ -E-X t/ / x+§/ \ X-E
_@GLD_ ERBL\ DGLAP
<
-1<x<-& -E<x<& E<x<1
~@-¢) THS

1+¢

<¢N\O|¢N> (Yn+1|Olpn_1) (W |OlN)

M. Diehl, et al, NPB2001
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IPD GPD

GPD at zero skewness H(x,£=0,A)

Fourier Transform x=0.98 — dTinT

s »/~ e s inK”

Impact Parameter Dependent GPD p(x,bT)

Probability density interpretation

X: longitudinal momentum fraction

bT: transverse spatial separation ~ (1-x)(r'+-r2;)

_All distributions peek at the center of impact
parameter (note the plot has been multiplied with bT)

_ heavier s quark is more localized as compared to
light u/d quark by ~20%.

21brp©(br) (fm™)
N
(@»)

0 _ (0) _(0)
Valence distribution PO (br) = pg (br) — pg (br)
IS scale-independent, as H(x,0,AT) evolution is
independent of AT,

oo
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1.05
OEMFF is the Zero-th moment of GPD  Amendolia et al.
0.8} N\ ™. * Jlab
1 J S Unmodified
Fy(t)= | dxle,HY(x,E 1)+ e HS (x, &, 1)), o6l N e Modified
1 = [ L RN T e Full DSE
L b I N T
04 | Tl T~ el
©@But the curve generally overshoots the data. No 7} | e T T ]
such problem for a covariant calculation (with 0.2| e —
conventional Feynman diagram ). Essentially a
problem from Fock state truncation. °80 05 10 15 20 25 30

@A hidden ERBL region is found in NJL model.

~ 1
H,(x.0.0) = Hy(x.0.0) + 5(0)F, (1) [ dyHiy(3.0.1),

§(x): ]:13] < |l as [£| — 0

----------------------------------------------------------------

-----------------------------------------------------------------

_ The first term of bare vertex leads to DGLAP
contribution.

_The rest (infinitely many) dressing diagrams lead to
the hidden ERBL contribution.
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Gravitational Form Factor

R (' ()[0"(0)]x" (p)) = 2 [PPO(1) + (G

EMT o/ = Y g(z)(v"0" +7"9")q(x) + (gluons)

“q")0 (1)

J.

q=u,d...

GPD x-moments: Sas

—1 < 0.20

~ 0.15
0.10

©@The hidden ERBL region doesn't contribute to GFF9.05
0.00

N.
Sa.
~~.~

| GFF (quark part)
1 0.30|.
/ dzzH'"(2,0,t) = A (1) 025\l +

Lattice data by
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AJT (1), LFWF |
AS§(t), LFWF
AZE(t), LFWF
AZT (), SQM
AZT (), NJL

D. Brommel |

L
=g
L
=g
=

0
d)’HI 1(3,0,1),

Contribute: Yes

No

(C.S. et al,

No

PRD2020)

No

A universal description within leading LFWFs truncation.
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Conclusions

OLFWFs can be obtained from Bethe-Salpeter wave functions, rendering a
variety of light front distributions calculable.

@In a realistic calculation, the spin-parallel LFWF of pion and kaon contributes
considerably, exhibiting a highly relativistic system. Less contribution for
heavy quark system (in preparation).

@ Existing data can be described using realistic leading Fock state LFWFs.

©®Many more to explore with DSEs.
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