

Nanjing University of Aeronautics and Astronautics

3-DIMENSIONAL IMAGING OF PION AND KAON ON THE LIGHT FRONT

-based on DSEs study

Chao Shi

Nanjing University of Aeronautics and Astronautics (NUAA)

2020.06.06@Workshop on Pion and Kaon Structure at EIC, CFNS/Stony Brook U.

GPDs

I-D correlation function & Collinear parton distribution functions

$$\phi_{ij}(x) = \frac{1}{2} \int \frac{dz^{-}}{2\pi} e^{ixP^{+}z^{-}} \langle P | \bar{\psi}_{j}(0) \psi_{i}(z) | P \rangle \Big|_{z^{+}=z_{\perp}=0} \longrightarrow [\phi_{ij}\gamma^{+}] = f(x)$$

Image: Second Second

$$\phi_{ij}(x,\xi,\Delta^2) = \frac{1}{2} \int \frac{dz^-}{2\pi} e^{ixP^+z^-} \left\langle P - \frac{\Delta}{2} \left| \bar{\psi}_i(0)\psi_j(z) \right| P + \frac{\Delta}{2} \right\rangle \Big|_{z^+=z_\perp=0}$$

$$[\phi_{ij}\gamma^+] = \frac{1}{2P^+} \left[H^q(x,\xi,t)\bar{u}(P + \frac{\Delta}{2})\gamma^+u(P - \frac{\Delta}{2}) + \dots \right]$$

GPDS
Image: Construction of the second se

TMD PDFs

The TMD correlation function

$$\Phi_{ij}(x, \boldsymbol{k}_{\perp}, S) = \int \frac{\mathrm{d}z^{-} \mathrm{d}^{2} \boldsymbol{z}_{\perp}}{(2\pi)^{3}} e^{i(k^{+} \boldsymbol{z}_{-} - \boldsymbol{k}_{\perp} \cdot \boldsymbol{z}_{\perp})} \left\langle P, S | \overline{\psi}_{j}(0) \psi_{i}(z) | P, S \right\rangle \Big|_{z^{+} = 0},$$

The TMD PDFs (leading twist)

$$\begin{split} \Phi(x, \mathbf{k}_{\perp}, S) &= \frac{1}{2} \left\{ f_{1} \not h_{+} - f_{1T}^{\perp} \frac{\epsilon_{T}^{ij} \mathbf{k}_{\perp}^{i} S_{\perp}^{j}}{M} \not h_{+} + \Lambda g_{1L} \gamma_{5} \not h_{+} + \frac{(\mathbf{k}_{\perp} \cdot \mathbf{S}_{\perp})}{M} g_{1T} \gamma_{5} \not h_{+} + h_{1T} \frac{[\not S_{\perp}, \not h_{+}]}{2} \gamma_{5} \right. \\ &+ \Lambda h_{1L}^{\perp} \frac{[\not k_{\perp}, \not h_{+}]}{2M} \gamma_{5} + \frac{(\mathbf{k}_{\perp} \cdot \mathbf{S}_{\perp})}{M} h_{1T}^{\perp} \frac{[\not k_{\perp}, \not h_{+}]}{2M} \gamma_{5} + i h_{1}^{\perp} \frac{[\not k_{\perp}, \not h_{+}]}{2M} \Big\}, \end{split}$$

Nonperturbative QCD

Transverse momentum dependent distributions (TMD)

3-D tomography in the momentum space.

Generalized parton distributions (GPD)

3-D picture of hadrons in the mixed spatial-momentum space.

DSE & symmetry preserving

The Pion&Kaon wave function can be solved by aligning the quark DSE and hadron BSE.

To solve these equations, truncation is needed for the vertex and scattering kernel. A physically reasonable truncation scheme should respect QCD's (nearly) chiral symmetry, namely, the Axial-Vector Ward-Takahashi Identity

The simplest manifestation is the Rainbow-Ladder truncation

Beyond Rainbow-Ladder

Inhomogeneous BSE

$$\begin{split} &\Gamma_{5\mu}(k;P) = Z_2 \gamma_5 \gamma_\mu \\ &- Z_2 \int_{dq} \mathcal{G}(k-q) D_{\rho\sigma}^{\text{free}}(k-q) \frac{\lambda^a}{2} \gamma_\alpha \mathcal{S}(q_+) \times \Gamma_{5\mu}(q;P) \mathcal{S}(q_-) \frac{\lambda^a}{2} \tilde{\Gamma}_\beta(q_-,k_-) \\ &+ Z_1 \int_{dq} g^2 D_{\alpha\beta}(k-q) \frac{\lambda^a}{2} \gamma_\alpha \mathcal{S}_f(q_+) \times \frac{\lambda^a}{2} \Lambda_{5\mu\beta}(k,q;P) \\ & \text{When } P^2 \to -m_\pi^2 , \ \Gamma_{5\mu}^j(k;P) \sim \frac{r_A P_\mu}{P^2 + m_\pi^2} \Gamma_\pi^j(k;P) \end{split}$$
(Lei Chang et al, PRL2009)

Beyond-RL kernel

$$\Gamma_{\mu}(p_1, p_2) = \Gamma_{\mu}^{\rm BC}(p_1, p_2) + \Gamma_{\mu}^{\rm acm}(p_1, p_2)$$
 (Lei Chang et al, PRL2011, PRC2012)

$$2\Lambda_{5\beta(\mu)} = [\tilde{\Gamma}_{\beta}(q_{+}, k_{+}) + \gamma_{5}\tilde{\Gamma}_{\beta}(q_{-}, k_{-})\gamma_{5}] \times \frac{1}{S^{-1}(k_{+}) + S^{-1}(-k_{-})}\Gamma_{5(\mu)}(k; P) \\ + \Gamma_{5(\mu)}(q; P)\frac{1}{S^{-1}(-q_{+}) + S^{-1}(q_{-})} \times [\gamma_{5}\tilde{\Gamma}_{\beta}(q_{+}, k_{+})\gamma_{5} + \tilde{\Gamma}_{\beta}(q_{-}, k_{-})]$$

The study of pion and kaon is well established in DSEs. There is no more parameter for tuning. TMDs and GPDs pose a new challenge.

TMDs & GPDs: Light-front approach

BSE approach to LFWF

To calculate the LFWFs, the standard way is to diagonalize the light-cone Hamiltonian. However, this is very challenging in QCD. In practice, light-cone Hamiltonian models are employed (light-front potential, holographic QCD, NJL model....)

An alternative way to calculate the LFWFs.

"...he ('t Hooft) did not use the light-cone formalism and which nowadays might be called standard. Instead, he started from covariant equations... The light-cone Schrodinger equation was then obtained by projecting the Bethe-Salpeter equation onto hyper-surfaces of equal light-cone time. In this way, one avoids to explicitly derive the light-cone Hamiltonian, which, as explained above, can be a tedious enterprise in view of complicated constraints one has to solve..." (Thomas Heinzl)

What we do: solve the BS equation first and then project the BS wave functions onto the light front!

A synergy between Lagrangian formalism (DSE) and Hamiltonian formalism (LF QCD).

Advantage: In the DSEs, one can selectively sum infinitely many diagrams (which potentially incorporates many higher Fock states) and conveniently preserves the symmetries of the Lagrangian.

LFWFs & Bethe-Salpeter wave function

BS WFs & LFWFs

$$\langle 0|\bar{d}_{+}(0)\gamma^{+}\gamma_{5}u_{+}(\xi^{-},\xi_{\perp})|\pi^{+}(P)\rangle = i\sqrt{6}P^{+}\psi_{0}(\xi^{-},\xi_{\perp}),$$

$$\langle 0|\bar{d}_{+}(0)\sigma^{+i}\gamma_{5}u_{+}(\xi^{-},\xi_{\perp})|\pi^{+}(P)\rangle = -i\sqrt{6}P^{+}\partial^{i}\psi_{1}(\xi^{-},\xi_{\perp}).$$
 (M. Burkardt et al, PLB 2002)

Image: Decision of the light frontWe all stic BS wave functionProject on to the light front $\psi_0(x, k_T^2) = \sqrt{3}i \int \frac{dk^+ dk^-}{2\pi}$ $\forall \psi_0(x, k_T^2) = \sqrt{3}i \int \frac{dk^+ dk^-}{2\pi}$ $\times \operatorname{Tr}_D[\gamma^+ \gamma_* \chi(k, p)] \delta(x p^+ - k^+),$ $\psi_1(x, k_T^2) = -\sqrt{3}i \int \frac{dk^+ dk^-}{2\pi} \frac{1}{k_T^2}$ $\times \operatorname{Tr}_D[i\sigma_{+i}k_T^i \gamma_* \chi(k, p)] \delta(x p^+ - k^+),$

(C. Mezrag et al, FBSY 2016)

LFWFs: $\psi_0(x, k_{\perp}^2) \& \psi_1(x, k_{\perp}^2)$

- Obtained from parameterized realistic BS wave functions.
- ψ0 (spin-antiparallel) and ψ1 (spinparallel) are comparable in strength, suggesting the spin parallel component also has considerable contribution. Highly relativistic system.
- Strong support at infrared kT, a consequence of the DCSB which generates significant strength in the infrared of BS wave function.
- At ultraviolet of kT, ψ0 scale as 1/kT² and ψ1 scale as 1/kT⁴, as has been predicted by pQCD. (one-gluon exchange dominance.)
- SU(3) flavor symmetry breaking effect: u/d and s quark mass difference masked by DCSB.

DSE & LF

$|^2_{\perp})|^2$

Significant strength at low k_T, resembles Gaussian-like form.

The TMD of kaon is slightly broader than pion.

Smoother as compared to holographic QCD.

Holographic QCD(A Bacchetta, et al, PLB2017)

TMD evolution

The TMD evolution is more conveniently done in coordinate space.

Renormalization group (RG) equation:

$$\mu^{2} \frac{d}{d\mu^{2}} F_{f \leftarrow h}(x, \vec{b}; \mu, \zeta) = \frac{1}{2} \underbrace{\gamma_{F}^{f}(\mu, \zeta) F_{f \leftarrow h}(x, \vec{b}; \mu, \zeta)}_{\zeta \frac{d}{d\zeta}} F_{f \leftarrow h}(x, \vec{b}; \mu, \zeta) = - \underbrace{\mathcal{D}^{f}(\mu, \vec{b}) F_{f \leftarrow h}(x, \vec{b}; \mu, \zeta)}_{F_{f \leftarrow h}(x, \vec{b}; \mu, \zeta)}$$
Anomalous Dimension

The scale μ is the standard RG scale, with the additional rapidity factorization scale ζ to regularize the light-cone divergence arising from Wilson lines. They were usually chosen to be the same order of scattering scale.

Solution:

$$F_{f\leftarrow h}(x,\vec{b};\mu_f,\zeta_f) = \exp\left[\int_P (\gamma_F^f(\mu,\zeta)\frac{d\mu}{\mu} - \mathcal{D}^f(\mu,\vec{b})\frac{d\zeta}{\zeta})\right]F_{f\leftarrow h}(x,\vec{b};\mu_i,\zeta_i)$$

TMD evolution:

Figure 2. Upper panel: DSE result using the DCSB-improved kernel for the time-reversal even *u*-quark TMD of the pion, $f_{\pi}^{u}(x, k_{T}^{2})$, at the model scale of $\mu_{0}^{2} = 0.52 \text{ GeV}^{2}$. Lower panel: Analogous result evolved to a scale of $\mu = 6 \text{ GeV}$ using TMD evolution with the b^{+} prescription and $g_{2} = 0.09 \text{ GeV}$ [43]. The TMDs are given in units of GeV⁻² and k_{T}^{2} in GeV².

$\Phi_{ij}(k, P; S, T) \sim \text{F.T.} \langle PST | \ \bar{\psi}_j(0) \ U_{[0,\xi]} \ \psi_i(\delta)$

The evolved TMD PDF at smaller x is significantly broader than that at large x (Non-factorizable x and k_T dependence).

Jef

Drell-Yan Process

Experiment (E615)

Transverse momentum dependence parameterized by function $P(qT;xF,m\mu\mu)$

$$\frac{d^{3}\sigma}{dx_{\pi}dx_{N}dq_{T}} = \frac{d^{2}\sigma}{dx_{\pi}dx_{N}}P(q_{T};x_{F},m_{\mu\mu}). \qquad \qquad q^{0} = \frac{\sqrt{3}}{2}(x_{\pi}+x_{N})$$
$$q^{3} = \frac{\sqrt{3}}{2}(x_{\pi}-x_{N})$$

"Experimental study of muon pairs produced by 252-GeV pions on tungsten", Conway, J.S. et al. Phys.Rev. D39 (1989) 92-122.

Theory

$$\frac{d^{3}\sigma}{dx_{\pi}dx_{N}dq_{T}} \propto |q_{T}|F_{uu}^{1}(x_{\pi}, x_{N}, q_{T}) \qquad \text{(leading twist)}$$
TMD formalism: $F_{UU}^{1}(x_{1}, x_{2}, q_{T}) = \frac{1}{N_{c}} \sum_{a} e_{a}^{2} \int d^{2}k_{1\perp}d^{2}k_{2\perp}\delta^{(2)}(q_{T} - k_{1\perp} - k_{2\perp}) \underbrace{f_{1,\pi}^{a}(x_{1}, k_{1\perp}^{2})f_{1,N}^{a}(x_{2}, k_{2\perp}^{2})}_{\text{offered by DSEs&evolution}} \qquad \text{borrow from global analysis}$

$$\text{Examine: } P(q_{T}; x_{F}, m_{\mu\mu}) \propto |q_{T}|F_{UU}^{1}(q_{T}; x_{F}, \tau)$$

The fitting function $P(q_T; x_F, m_{\mu\mu})/q_T$ at $x_F = 0.0$ (red solid), 0.25 (green solid) and 0.5 (blue solid). The band colored bands are our results based on b*-prescription, with upper boundary corresponding to $g_2 = 0.09$ and lower boundary for $g_0 = 0.0$. The dashed lines are obtained following ζ -prescription where g_2 is found to be consistent with zero at NNLL/NNLO.

• Our results using two evolution schemes generally agree with E615 measurement. In particular, when the non-perturbative Sudakov factor goes to zero as suggested by ζ -prescription at higher order. (The deviation is less than 10% for $x_F = 0$ and 0.25, and increases to 30% at most for $x_F = 0.5$.) Alessandro Bacchetta, et al, JHEP2017 Alexey Vladimirov, et al, EPJC2018

 $\stackrel{\scriptstyle \leftarrow}{=}$ Deviation grows as x_F goes larger, TMD formalism less valid.

GPD: overlap representation

At leading twist, the pion has one GPD:

$$H^{q}_{\pi}(x,\xi,t) = \frac{1}{2} \int \frac{dz^{-}}{2\pi} e^{ixP^{+}z^{-}} \langle p_{2} | \bar{\psi}^{q}(-\frac{z}{2}) \gamma^{+} \psi^{q}(\frac{z}{2}) | p_{1} \rangle |_{z^{+}=z_{\perp}=0}$$

There are two regions, ERBL ($|x| < |\xi|$) and DGLAP ($|x| > |\xi|$) region, named after their evolution in limiting cases

M. Diehl, et al, NPB2001

IPD GPD

GPD at zero skewness $H(x,\xi=0,\Delta)$

Fourier Transform

Impact Parameter Dependent GPD ρ(x,bT)

Probability density interpretation

x: longitudinal momentum fraction

bT: transverse spatial separation ~ $(1-x)(r_T-r_T^2)$

- All distributions peek at the center of impact parameter (note the plot has been multiplied with bT)
- heavier s quark is more localized as compared to light u/d quark by ~20%.

Valence distribution $\rho^{(0)}(b_T) = \rho_q^{(0)}(b_T) - \rho_{\bar{q}}^{(0)}(b_T)$ is scale-independent, as H(x,0, Δ T) evolution is independent of Δ T.

EMFF

EMFF is the Zero-th moment of GPD

$$F_M(t) = \int_{-1}^1 dx [e_u H^u_M(x,\xi,t) + e_d H^d_M(x,\xi,t)],$$

But the curve generally overshoots the data. No such problem for a covariant calculation (with conventional Feynman diagram). Essentially a problem from Fock state truncation.

A hidden ERBL region is found in NJL model.

Gravitational Form Factor

GFF:
$$\langle \pi^+(p')|\Theta^{\mu\nu}(0)|\pi^+(p)\rangle = \frac{1}{2}[P^{\mu}P^{\nu}\Theta_2(t) + (g^{\mu\nu}q^2 - q^{\mu}q^{\nu})\Theta_1(t)].$$

Conclusions

LFWFs can be obtained from Bethe-Salpeter wave functions, rendering a variety of light front distributions calculable.

In a realistic calculation, the spin-parallel LFWF of pion and kaon contributes considerably, exhibiting a highly relativistic system. Less contribution for heavy quark system (in preparation).

Existing data can be described using realistic leading Fock state LFWFs.

Many more to explore with DSEs.

