LQCD 3D Meson Structure Prospects

Workshop on Pion \& Kaon
Structure Functions at the EIC

Colin Egerer

On Behalf of the HadStruct Collaboration

Jefferson Lab - Thomas Jefferson National Accelerator Facility

The EIC - An Essential Window into Hadron Structure

\rightarrow Emergent hadrons from quarks/gluons

$$
\mathcal{L}_{\mathrm{QCD}}=\bar{\psi}_{i}\left[i\left(\gamma^{\mu} D_{\mu}\right)_{i j}-m \delta_{i j}\right] \psi_{j}-\frac{1}{4} F_{\mu \nu}^{c} F^{\mu \nu c}
$$

\rightarrow "A machine that will unlock the secrets of the strongest force in Nature"

- confinement/saturation
- 3D-imaging + proton spin puzzle
\rightarrow GPDs - experimental probes
e.g. DVCS, exclusive meson production,...
challenging to fully constrain
timely non-perturbative methods

Physics Today 73, 3, 22 (2020)

Roadmap

- The EIC \& Hadron Structure
- The light-cone \& Lattice QCD
- factorizable matrix elements
- Pseudo-loffe-time Distributions
- results in pion/nucleon
- 3D Meson structure from pseudo-distributions
- Numerics
- Distillation
- generalized pseudo-distributions
- Outlook

Towards the Extraction of GPDs from

 First-Principles Lattice QCD$$
\int \frac{\mathrm{d} \xi^{-}}{2 \pi} e^{-i x P^{+} \xi^{-}}\left\langle P^{\prime}\right| T \bar{\psi}\left(0, \frac{\xi^{-}}{2}, \mathbf{0}_{T}\right) \frac{\gamma^{+}}{2} W\left(\xi^{-} / 2,-\xi^{-} / 2\right) \psi\left(0,-\frac{\xi^{-}}{2}, \mathbf{0}_{T}\right)|P\rangle
$$

\rightarrow All light-cone physics is lost in a Euclidean spacetime

$$
g^{\mu \nu}=\operatorname{diag}(-1,-1,-1,-1) \quad \Longrightarrow \quad z^{2}=0
$$

\rightarrow Moments calculations \& the OPE

- Power-divergent mixing/gauge noise for high moments
\rightarrow Led [historically] to quasi/pseudo-PDF (forward-limit)

See H.W. Lin Thur. Talk
$\tilde{q}\left(x, P_{3}^{2}\right)=\int_{-\infty}^{\infty} \frac{\mathrm{d} z}{4 \pi} e^{-i x z P_{3}}\langle P| \bar{\psi}(z) \gamma^{0} W(z) \psi(0)|P\rangle$
X. Ji, Phys. Rev. Lett. 110, 262002 (2013), arXiv:1305.1539 [hep-ph]

- $\mathcal{P}\left(x, z^{2}\right)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \mathrm{d} \nu e^{-i x \nu} \mathcal{M}\left(\nu, z^{2}\right)$
A. V. Radyushkin, Phys. Rev. D 96, 034025 (2017)

Pseudo-Ioffe-time Distributions (pITDs)

\rightarrow A single-hadron matrix element of a slightly different character

$$
M^{\alpha}(z, p)=\langle h(p)| \bar{\psi}(z) \gamma^{\alpha} W(z, 0 ; A) \psi(0)|h(p)\rangle=2 p^{\alpha} \mathcal{M}_{\mathrm{p}}\left(\nu, z^{2}\right)+z^{\alpha} \mathcal{M}_{\mathrm{z}}\left(\nu, z^{2}\right)
$$

\rightarrow Leading twist : well-chosen kinematics

$$
p^{\mu}=\left(p^{0}, 0,0, p_{3}\right) \quad z^{\mu}=\left(0,0,0, z_{3}\right)
$$

Perturbatively computable
\rightarrow A short-distance factorization to ITD matching coefficients

$$
\mathcal{M}\left(\nu, z^{2}\right)=\sum_{a=q, \bar{q}, g} C_{a}\left(z^{2} \mu^{2}, \alpha_{s}\right) \otimes \mathcal{I}_{a}\left(\nu, \mu^{2}\right)+\text { h.t. }
$$

\Rightarrow Wilson line UV-divergent for spacelike $-z^{2}$
\rightarrow Compute $M^{\alpha}(z, p)$ but instead analyze

$$
\mathfrak{M}\left(\nu, z^{2}\right) \equiv \frac{\mathcal{M}_{\mathrm{p}}\left(\nu, z^{2}\right)}{\mathcal{M}_{\mathrm{p}}\left(0, z^{2}\right)}
$$

Pseudo-Distributions \& Pion Valence PDF

B. Joó et. al., Phys. Rev. D100, 114512 (2019), arXiv:1909.08517 [hep-lat]

Pseudo-Distributions \& Nucleon Valence PDF

$>\quad[$ Real] ITD matched to $2 \mathrm{GeV} \in \overline{\mathrm{MS}}$ from reduced pITD results on various ensembles

$$
q_{\mathrm{v}}^{N}(x)=\mathcal{N} x^{\alpha}(1-x)^{\beta}(1+c \sqrt{x}+d x)
$$

$$
q_{\mathrm{v}}^{N}\left(x, \mu^{2}, m_{\pi}\right)=q_{\mathrm{v}}^{N}\left(x, \mu^{2}, m_{0}\right)+a \Delta m_{\pi}+b \Delta m_{\pi}^{2}
$$

3D Structure of Hadrons from LQCD

A. Radyushkin, Phys. Rev. D100, 116011 (2019), arXiv:1909.08474 [hep-ph]
A. Radyushkin, arXiv:1912.04244 [hep-ph]
\rightarrow Off-forward matrix elements and the pseudo-distribution formalism

$$
\begin{aligned}
& F^{q}=\left.\frac{1}{2} \int \frac{\mathrm{~d} z^{-}}{2 \pi} e^{i x P^{+} z^{-}}\left\langle p^{\prime}\right| \bar{\psi}\left(-\frac{1}{2} z\right) \gamma^{\alpha} \psi\left(\frac{1}{2} z\right)|p\rangle\right|_{z^{+}=0, \mathbf{z}_{T}=0} \\
& \vdots \\
&\left.\ldots \ldots \ldots \ldots \ldots \ldots \ldots p_{2}\left|\bar{\psi}\left(-\frac{z}{2}\right) \gamma^{\alpha} \hat{E}\left(-\frac{z}{2}, \frac{z}{2} ; A\right) \psi\left(\frac{z}{2}\right)\right| p_{1}\right\rangle=2 \mathcal{P}^{\alpha} \int_{-1}^{1} \mathrm{~d} x e^{-i x(\mathcal{P} z)} H\left(x, \xi, t ; \mu^{2}\right)
\end{aligned}
$$

\rightarrow Compute modified spacelike matrix elements

$$
\mathrm{M}^{\alpha}\left(p_{2}, p_{1}, z\right) \equiv\left\langle h\left(p_{2}\right)\right| \bar{\psi}(0) \frac{\tau^{3}}{2} \Gamma^{\alpha} W(0, z ; A) \psi(z)\left|h\left(p_{1}\right)\right\rangle
$$

\rightarrow Double loffe-time pseudo-distributions

$$
\mathrm{M}^{\alpha}\left(p_{2}, p_{1}, z\right)=\frac{\left(p_{2}+p_{1}\right)^{\alpha}}{2} M\left(\nu_{2}, \nu_{1}, t ; z^{2}\right)+z^{\alpha} N\left(\nu_{2}, \nu_{1}, t ; z^{2}\right) \quad \begin{aligned}
& \nu_{i} \equiv-\left(p_{i} \cdot z\right) \\
& t=\left(p_{1}-p_{2}\right)^{2}
\end{aligned}
$$

Recent Community Progress

$a(\mathrm{fm})$	$L(\mathrm{fm})$	$m_{\pi}(\mathrm{MeV})$	ξ	$\mu(\mathrm{GeV})$
~ 0.12	~ 3	~ 310	0	4

Renormalize

 UV Wilson line divergence
$>\left(\frac{2 \pi}{L}\right)^{2}$
$\tilde{H}_{u-d, R}^{\pi}\left(x, \xi, t, P^{z}, p_{z}^{R}, \mu_{R}\right)=C\left(\frac{x}{y}, \frac{\xi}{y}, \frac{\mu_{R}}{p_{z}^{R}}, \frac{y P^{z}}{\mu}, \frac{y P^{z}}{p_{z}^{R}}\right) \otimes H_{u-d}^{\pi}(y, \xi, t, \mu)+\mathcal{O}\left(\frac{m_{\pi}^{2}}{P_{z}^{2}}, \frac{\Lambda_{\mathrm{QCD}}^{2}}{P_{z}^{2}}\right)$ Y.-S. Liu et. al., Phys. Rev.D 100 (2019) 3, 034006, arXiv:1902.00307 [hep-ph]

True distribution recovered in infinite momentum limit; Finite corrections via LaMET

Some Practical Considerations/Definitions

\rightarrow Well-chosen kinematics $+\Gamma^{\alpha}=\gamma^{0}$

$$
\begin{aligned}
& p_{i}^{\mu}=\left\{E_{1},(-1)^{i-1} \Delta_{\perp} / 2, P_{i}\right\} \\
& z^{\mu}=\left(0,0,0, z_{3}\right) \sum_{\text {Removal of pure higher-twist contribution }} \\
& z^{\alpha} N\left(\nu_{2}, \nu_{1}, t ; z^{2}\right)
\end{aligned}
$$

$\rightarrow \quad$ Pseudo-Generalized Ioffe-time Distribution (pGITD)

$$
M\left(\nu_{2}, \nu_{1}, t ; z^{2}\right) \mapsto \mathcal{M}\left(\nu, \xi, t ; z_{3}^{2}\right)
$$

$$
\begin{gathered}
\xi=\frac{\left(p_{1} z\right)-\left(p_{2} z\right)}{\left(p_{1} z\right)+\left(p_{2} z\right)}=\frac{\nu_{1}-\nu_{2}}{\nu_{1}+\nu_{2}}=\frac{P_{1}-P_{2}}{P_{1}+P_{2}} \\
\nu=\frac{\nu_{1}+\nu_{2}}{2}
\end{gathered}
$$

\rightarrow Technicality: matching w.r.t. "symmetric" operator

$$
\begin{aligned}
\left\langle p_{2}\right| \bar{\psi}(0) \cdots \psi(z)\left|p_{1}\right\rangle & =e^{-i\left(p_{1} z\right) / 2+i\left(p_{2} z\right) / 2}\left\langle p_{2}\right| \bar{\psi}(-z / 2) \cdots \psi(z / 2)\left|p_{1}\right\rangle \\
& =e^{i \xi \nu}\left\langle p_{2}\right| \bar{\psi}(-z / 2) \cdots \psi(z / 2)\left|p_{1}\right\rangle \\
& =e^{i \xi \nu} \widetilde{\mathcal{M}}
\end{aligned}
$$

Matching pGITD to GITD

\rightarrow Manage space-like Wilson line UV-divergences
K. Orginos, A. Radyushkin, J. Karpie, and S. Zafeiropoulos, Phys. Rev. D96, 094503 (2017)

$$
\widetilde{\mathfrak{M}}\left(\nu, \xi, t, z_{3}^{2}\right) \equiv \frac{\widetilde{\mathcal{M}}\left(\nu, \xi, t, z_{3}^{2}\right)}{\widetilde{\mathcal{M}}\left(0,0,0, z_{3}^{2}\right)}
$$

Observed to dramatically reduced higher-twist $\mathcal{O}\left(z^{2}\right)$ effects in forward cases
$\rightarrow \quad$ NLO matching of pGITD to light-cone GITD

$$
\bar{u}=1-u
$$

An III-posed Inverse

\rightarrow Direct approach -- invert GITD/GPD relation
\rightarrow Advanced reconstruction methods

$$
\begin{aligned}
& H\left(x, \xi, t ; \mu^{2}\right)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \mathrm{d} \nu e^{-i \nu x} \widetilde{\mathcal{I}}\left(\nu, \xi, t, \mu^{2}\right) \\
& N_{\nu} \sim \mathcal{O}(30)
\end{aligned}
$$

- Backus-Gilbert, NNs, ...
\rightarrow Supply extra, physically-motivated, information
parametrize structure function
- e.g. $q_{v}^{\pi}(x)$ smooth, $0<x<1$ support
- $q_{\mathrm{v}}^{\pi}(x)=N x^{\alpha}(1-x)^{\beta} \mathcal{P}(x)$

\bullet GPDs: e.g. polynomiality $\left\langle x^{n}\right\rangle_{H^{q}} \sim \mathcal{O}\left(\xi^{n+1}\right)$
A. V. Radyushkin, Phys. Rev. D 59, 014030 (1999)
\rightarrow When to numerically perform convolution?

$$
\begin{gathered}
\widetilde{\mathfrak{M}}\left(\nu, \xi, t, z_{3}^{2}\right)=K\left(\xi \nu, z^{2} \mu^{2} ; \alpha_{s}\right) \otimes \widetilde{\mathcal{I}}\left(\nu, \xi, t, \mu^{2}\right) \\
\widetilde{\mathfrak{M}}\left(\nu, \xi, t, z_{3}^{2}\right)=\mathcal{K}\left(x \nu, \xi \nu, z^{2} \mu^{2} ; \alpha_{s}\right) \otimes H\left(x, \xi, t, \mu^{2}\right)
\end{gathered}
$$

Numerics...

\rightarrow Limits of factorizable matrix element methods
\star quasi-GPD $\mathcal{O}\left(\frac{m_{\pi}^{2}}{P_{z}^{2}}, \frac{\Lambda_{\mathrm{CCD}}^{2}}{P_{z}^{2}}\right) \quad \star$ pseudo-GITD $\mathcal{O}\left(z^{2} \Lambda_{\mathrm{QCD}}^{2}\right)$

High Momenta Essential!

\rightarrow Standard sequential operator methods costly

- new inversions: interpolator constructions, $\Gamma^{\mu} \& q^{2}$
\rightarrow Excited-state contamination, signal-to-noise, $O(4) \longrightarrow H(4)$

$$
C(t) / \sigma_{C(t)}^{2} \sim e^{-\left(E_{H}-\frac{3}{2} m_{\pi}\right) t}
$$

$$
\begin{gathered}
C(t)=\left\langle\mathcal{O}(t) \mathcal{O}^{\dagger}(0)\right\rangle \sim e^{-E_{H} t} \\
\sigma_{C(t)}^{2}=\left\langle C(t) C^{\dagger}(t)\right\rangle-\langle C(t)\rangle^{2} \sim e^{-3 m_{\pi} t}
\end{gathered}
$$

Numerics...

\rightarrow Limits of factorizable matrix element methods

\rightarrow Standard sequential operator methods costly

- new inversions: interpolator constructions, $\Gamma^{\mu} \& q^{2}$
\rightarrow Excited-state contamination, signal-to-noise, $O(4) \longrightarrow H(4)$

$$
C(t) / \sigma_{C(t)}^{2} \sim e^{-\left(E_{H}-\frac{3}{2} m_{\pi}\right) t}
$$

$$
\begin{gathered}
C(t)=\left\langle\mathcal{O}(t) \mathcal{O}^{\dagger}(0)\right\rangle \sim e^{-E_{H} t} \\
\sigma_{C(t)}^{2}=\left\langle C(t) C^{\dagger}(t)\right\rangle-\langle C(t)\rangle^{2} \sim e^{-3 m_{\pi} t}
\end{gathered}
$$

\rightarrow Distillation

Distillation

M. Peardon et al., Phys. Rev. D80, 054506 (2009), arXiv:0905.2160 [hep-lat]

$$
J_{\sigma, n_{\sigma}}=e^{\sigma \nabla^{2}}=\sum_{\lambda} e^{-\sigma \lambda}|\lambda\rangle\langle\lambda|
$$

\rightarrow Low-mode approximation to some gauge-covariant smearing kernel (e.g. Dist $=\sum_{i=1}^{N}|\lambda\rangle(\lambda \mid$)
\rightarrow Considering the Jacobi-smearing kernel

$$
\begin{aligned}
&-\nabla_{a b}^{2}(\vec{x}, \vec{y} ; t)=6 \delta_{x y} \delta_{a b}- \sum_{j=1}^{3}\left[\tilde{U}_{j}(\vec{x}, t)_{a b} \delta_{x+\hat{\jmath}, y}+\tilde{U}_{j}^{\dagger}(\vec{x}-\hat{\jmath}, t)_{a b} \delta_{x-\hat{\jmath}, y}\right] \\
&-\nabla^{2} \xi^{(k)}=\lambda^{(k)} \xi^{(k)}
\end{aligned}
$$

$\rightarrow \quad$ Define Distillation of $\quad \operatorname{rk}(\mathcal{D i s t})=N \ll N_{c} \times V_{3}$

$$
\square(\vec{x}, \vec{y} ; t)_{a b}=\sum_{k=1}^{N} \xi_{a}^{(k)}(\vec{x}, t) \xi_{b}^{(k) \dagger}(\vec{y}, t)
$$

\rightarrow Admits extended basis of interpolators [GEVP]

When the Dust Settles

$$
\begin{aligned}
C_{i j}^{2 p t}(t) & =\left\langle\mathcal{O}_{i}(t) \overline{\mathcal{O}}_{j}(0)\right\rangle \\
C_{i j, \Gamma}^{3 \mathrm{~T}}(t, \tau) & =\left\langle\mathcal{O}_{i}(t) \mathcal{J}(\tau) \overline{\mathcal{O}}_{j}(0)\right\rangle
\end{aligned}
$$

\rightarrow Factorization of correlation functions

$$
\begin{gathered}
C_{M}^{2 \mathrm{pt}}\left(t^{\prime}, t\right)=\operatorname{Tr}\left[\Phi^{M}\left(t^{\prime}\right) \tau\left(t^{\prime}, t\right) \Phi^{M}(t) \tau\left(t, t^{\prime}\right)\right] \\
C_{u-d}^{3 \mathrm{pt}}\left(t^{\prime}, \tau, t\right)=\operatorname{Tr}\left[\Phi^{M}\left(t^{\prime}\right) \mathcal{J}\left(t^{\prime}, \tau, t\right) \Phi^{M}(t) \gamma_{5} \tau^{\dagger}\left(t^{\prime}, t\right) \gamma_{5}\right]
\end{gathered}
$$

When the Dust Settles

$$
\left.\begin{array}{ll}
& C_{i j}^{2 \mathrm{pt}}(t)=\left\langle\mathcal{O}_{i}(t) \overline{\mathcal{O}}_{j}(0)\right\rangle \\
C_{i j, \Gamma}^{3 \mathrm{pt}}(t, \tau)=\left\langle\mathcal{O}_{i}(t) \mathcal{J}(\tau) \overline{\mathcal{O}}_{j}(0)\right\rangle\left(\vec{p}, t_{j}\right)=e^{-i p \cdot y} S_{M}^{\alpha \beta}(\bar{u} \square)^{\alpha} \Gamma_{M}(\square d)^{\beta}(t) \\
\Rightarrow & \text { Factorization of correlation functions } \\
& C_{M}^{2 \mathrm{pt}}\left(t^{\prime}, t\right)=\operatorname{Tr}\left[\Phi^{M}\left(t^{\prime}\right) \tau\left(t^{\prime}, t\right) \Phi^{M}(t) \tau\left(t, t^{\prime}\right)\right]
\end{array} \Phi_{\mu \nu}^{(i, j) M}(t)=\xi^{(i) \dagger}(t) \mathcal{D}^{M}(t) \xi^{(j)}(t) S_{\mu \nu}^{M A}\right)
$$

$$
\begin{gathered}
C_{M}^{2 \mathrm{pt}}\left(t^{\prime}, t\right)=\operatorname{Tr}\left[\Phi^{M}\left(t^{\prime}\right) \tau\left(t^{\prime}, t\right) \Phi^{M}(t) \tau\left(t, t^{\prime}\right)\right] \\
C_{u-d}^{3 \mathrm{pt}}\left(t^{\prime}, \tau, t\right)=\operatorname{Tr}\left[\Phi^{M}\left(t^{\prime}\right) \mathcal{J}\left(t^{\prime}, \tau, t\right) \Phi^{M}(t) \gamma_{5} \tau^{\dagger}\left(t^{\prime}, t\right) \gamma_{5}\right]
\end{gathered}
$$

\rightarrow Inversion cost amortized across physics observables!

- extended interpolator basis
\rightarrow Explicit momentum projections at each time slice

When the Dust Settles

$$
\left.\begin{array}{ll}
& C_{i j}^{2 \mathrm{pt}}(t)=\left\langle\mathcal{O}_{i}(t) \overline{\mathcal{O}}_{j}(0)\right\rangle \\
\left.C_{i j, \Gamma}^{3 \mathrm{pt}}(t, \tau)=\left\langle\mathcal{O}_{i}(t) \mathcal{J}(\tau) \overline{\mathcal{O}}_{j}(0)\right\rangle, t_{j}\right)=e^{-i p \cdot y} S_{M}^{\alpha \beta}(\bar{u} \square)^{\alpha} \Gamma_{M}(\square d)^{\beta}(t) \\
\rightarrow & \text { Factorization of correlation functions } \\
& C_{M}^{2 \mathrm{pt}}\left(t^{\prime}, t\right)=\operatorname{Tr}\left[\Phi^{M}\left(t^{\prime}\right) \tau\left(t^{\prime}, t\right) \Phi^{M}(t) \tau\left(t, t^{\prime}\right)\right]
\end{array} \quad \Phi_{\mu \nu}^{(i, j) M}(t)=\xi^{(i) \dagger}(t) \mathcal{D}^{M}(t) \xi^{(j)}(t) S_{\mu \nu}^{M A}\right)
$$

$$
C_{u-d}^{3 \mathrm{pt}}\left(t^{\prime}, \tau, t\right)=\operatorname{Tr}\left[\Phi^{M}\left(t^{\prime}\right) \mathcal{J}\left(t^{\prime}, \tau, t\right) \Phi^{M}(t) \gamma_{5} \tau^{\dagger}\left(t^{\prime}, t\right) \gamma_{5}\right]
$$

\rightarrow Inversion cost amortized across physics observables!

- extended interpolator basis
\rightarrow Explicit momentum projections at each time slice

\rightarrow Distillation at high-momenta feasible

$$
|\vec{p}| \sim 3 \mathrm{GeV}
$$

Sketch of Pseudo-GITD Computation

\rightarrow Production only requires non-local "genprops"

$$
\tilde{\tau}_{\text {pGITD }}^{i j, \Gamma}\left(t_{f}, t_{0} ; \tau, \vec{z} ; \vec{q}\right)=\sum_{\overrightarrow{z_{0}}} e^{i \vec{q} \cdot \vec{z}_{0}} \xi^{(i) \dagger}\left(t_{f}\right) D^{-1}\left(t_{f} ; \vec{z}+\vec{z}_{0}, \tau\right) \Gamma W\left(\vec{z}+\vec{z}_{0}, \vec{z}_{0} ; \tau\right) D^{-1}\left(\vec{z}_{0}, \tau ; t_{0}\right) \xi^{(j)}\left(t_{0}\right)
$$

Sketch of Pseudo-GITD Computation

\rightarrow Production only requires non-local "genprops"

$$
\tilde{\tau}_{\mathrm{pGITD}}^{i j, \Gamma}\left(t_{f}, t_{0} ; \tau, \vec{z} ; \vec{q}\right)=\sum_{\vec{z}_{0}} e^{i \vec{q} \cdot \vec{z}_{0}} \xi^{(i) \dagger}\left(t_{f}\right) D^{-1}\left(t_{f} ; \vec{z}+\vec{z}_{0}, \tau\right) \Gamma W\left(\vec{z}+\vec{z}_{0}, \vec{z}_{0} ; \tau\right) D^{-1}\left(\vec{z}_{0}, \tau ; t_{0}\right) \xi^{(j)}\left(t_{0}\right)
$$

B. Joó, J. Karpie, K, Orginos et al., Phys. Rev. D100, 114512 (2019)

Sketch of Pseudo-GITD Computation

\rightarrow Production only requires non-local "genprops"

$$
\tilde{\tau}_{\text {pGITD }}^{i j, \Gamma}\left(t_{f}, t_{0} ; \tau, \vec{z} ; \vec{q}\right)=\sum_{z \bar{m}} e^{i \vec{q} \cdot \vec{z}_{0}} \xi^{(i) \dagger}\left(t_{f}\right) D^{-1}\left(t_{f} ; \vec{z}+\vec{z}_{0}, \tau\right) \Gamma W\left(\vec{z}+\vec{z}_{0}, \vec{z}_{0} ; \tau\right) D^{-1}\left(\vec{z}_{0}, \tau ; t_{0}\right) \xi^{(j)}\left(t_{0}\right)
$$

B. Joó, J. Karpie, K, Orginos et al., Phys. Rev. D100, 114512 (2019)
\rightarrow Summation method to improve matrix element extraction
C. Bouchard et.al ,Phys. Rev. D 96, no. 1, 014504 (2017)

$$
C_{3 \mathrm{pt}}^{A B}\left(\vec{p}, \vec{q} ; t_{f}, t_{0}, \tau ; \vec{z}\right)=\sum_{\tau} \operatorname{Tr}\left\langle\Phi^{A}\left(\vec{p}, t_{f}\right) \tilde{\tau}\left(t_{f}, t_{0} ; \tau, \vec{z} ; \vec{q}\right) \Phi^{B}\left(\vec{p}, t_{0}\right) \tau^{\dagger}\left(t_{f}, t_{0}\right)\right\rangle
$$

Ongoing Pseudo-GITD Production

\rightarrow Target ensemble:

ID	$a(\mathrm{fm})$	$m_{\pi}(\mathrm{MeV})$	$L^{3} \times N_{t}$	N_{cfg}	N_{vec}
$a 94 m 358$	$0.094(1)$	$358(3)$	$32^{3} \times 64$	350	64

\rightarrow Genprop production well underway
\bullet computing: $\left\{\gamma^{\mu},|z| \leq 8, N_{Q^{2}}=19, N_{\text {vec }}=64\right\}$

- recall,

$$
\xi=\frac{\left(p_{1} z\right)-\left(p_{2} z\right)}{\left(p_{1} z\right)+\left(p_{2} z\right)}=\frac{P_{1}-P_{2}}{P_{1}+P_{2}} \quad \begin{gathered}
P_{i}^{z} \text { fixes } \xi \\
+
\end{gathered}
$$

- broad longitudinal momenta $P_{i}^{z} \in \frac{2 \pi}{L} \mathbb{Z}_{7} \quad z_{3}$ fixes ν
\rightarrow Goals:

$$
\begin{aligned}
& H_{u-d}^{\pi}(x, \xi, t) \\
& H^{K}(x, \xi, t) \\
& H_{u-d}^{N}(x, \xi, t), E_{u-d}^{N}(x, \xi, t), \& \tilde{H}, \tilde{E}
\end{aligned}
$$

Summary

$>$ Light-cone physics inaccessible directly in LQCD

- factorizable matrix elements
- LaMET -- quasi-PDFs/GPDs
- loffe-time pseudo-distributions (pITDs/pGITDs)
- Two-current correlators -- Lattice "Cross Sections"

See D. Richards Wed. Talk
$>$ Encouraging pion/nucleon PDF results from pITDs (pseudo-PDFs)

- Distillation -------------> improved sampling, excited-state control
- vehicle to isolate observables simultaneously
> Guidance for EIC effort to map hadrons tomographically
$>$ Excited to share results in coming months...

THANK YOU!

Backups...

NLO Matching Kernel - pITDs to ITDs

$\rightarrow \quad$ Can match reduced pITD at many scales to $\overline{M S}$ ITD in a single step

$$
\mathfrak{M}\left(\nu, z^{2}\right)=\mathcal{I}\left(\nu, \mu^{2}\right)+\frac{\alpha_{s}}{2 \pi} C_{F} \int_{0}^{1} \mathrm{~d} u\left[\ln \left(z^{2} \mu^{2} \frac{e^{2 \gamma_{E}+1}}{4}\right) B(u)+D(u)\right] \mathcal{I}\left(u \nu, \mu^{2}\right)+\text { h.t. }
$$

$\rightarrow \quad$ Where $B(u)$ is the Altarelli-Parisi kernel and $D(u)$ is a scale independent term

$$
B(u)=\left[\frac{1+u^{2}}{1-u}\right]_{+} \quad D(u)=\left[4 \frac{\ln (1-u)}{1-u}-2(1-u)\right]_{+}
$$

Variational Method

\rightarrow Exploit redundancy of interpolators in a symmetry channel
\rightarrow Optimal linear combination to project onto $|\mathbf{n}\rangle$

$$
\begin{gathered}
C(t) v_{\mathbf{n}}\left(t, t_{0}\right)=\lambda_{\mathbf{n}}\left(t, t_{0}\right) C\left(t_{0}\right) v_{\mathbf{n}}\left(t, t_{0}\right) \\
C_{i j}\left(t^{\prime}\right)=\left\langle\mathcal{O}_{i}\left(t^{\prime}\right) \mathcal{O}_{j}^{\dagger}(0)\right\rangle
\end{gathered}
$$

$$
v_{\mathrm{n}^{\prime}}^{\dagger} C\left(t_{0}\right) v_{\mathrm{n}}=\delta_{\mathrm{n}^{\prime}, \mathrm{n}}
$$

$\rightarrow \quad$ Fixed t_{0} and solved for $t>t_{0}$
\rightarrow Solutions yield (organized by $\left.\left|\lambda_{n}\left(t, t_{0}\right)\right|\right)$

- "Principal correlator"

$$
\lambda_{\mathrm{n}}\left(t, t_{0}\right) \sim e^{-E_{\mathrm{n}}\left(t-t_{0}\right)}
$$

- Interpolator weights

$$
\mathcal{O}_{\mathbf{n}}^{\text {opt } \dagger}=\sum_{i} v_{\mathrm{n}}^{i}\left(t, t_{0}\right) \mathcal{O}_{i}^{\dagger}
$$

