Further Prospects for Pion Structure Measurements at the EIC

Cynthia Keppel

June 2020

Workshop on Pion and Kaon Structure Functions at the EIC

Kinematics of DIS Events

Forward Nucleon Tagged DIS (TDIS) at HERA

Jefferson Lab

TDIS at HERA – *proton* tag

• Tag leading baryon production

TDIS Measurements at HERA

- Tag leading baryon production
- $ep \rightarrow eXN$

• Yield flat below $x \approx 0.95$

at limit $x_L \rightarrow 1$

Consider the proton a superposition of states...

$$\begin{split} |p> & \to & \sqrt{1-a-b}|p_0> & 014004 \\ & + & \sqrt{a}\left(\left(-\sqrt{\frac{1}{3}}|p_0\pi^0> + \sqrt{\frac{2}{3}}|n_0\pi^+>\right) & \text{Chiral approach: $a=0.24$, $b=0.12$} \\ & + & \sqrt{b}\left(-\sqrt{\frac{1}{2}}|\Delta_0^{++}\pi^-> - \sqrt{\frac{1}{3}}|\Delta_0^{+}\pi^0> + \sqrt{\frac{1}{6}}|\Delta_0^0\pi^+>\right) \end{split}$$

Regge approach: *a=0.105*,

Nikolaev et al., PRD60 (1999)

b=0.015

• The π^+N cloud doubles π^0N cloud in the proton.

TDIS at HERA – <u>neutron</u> tag

The leading neutron results are different.
There is no elastic (diffractive) peak present.
The leading neutron rate is roughly a factor of two *lower* than the leading proton rate for x_L<1.
Proton isoscalar events include diffractive

Pomeron, neutron events isovector only

<u>Model</u> one pion exchange as the dominant mechanism.
Can extract pion structure function

DESY 09-185 Eur. Phys. J. C68 (2010) 381

Consider the proton a superposition of states...

$$\begin{split} |p> & \to & \sqrt{1-a-b} |p_0> & 014004 \\ & + & \sqrt{a} \left(\left(-\sqrt{\frac{1}{3}} |p_0 \pi^0> + \sqrt{\frac{2}{3}} |n_0 \pi^+> \right) & \text{Chiral approach: } a=0.24, b=0.12 \\ & + & \sqrt{b} \left(-\sqrt{\frac{1}{2}} |\Delta_0^{++} \pi^-> -\sqrt{\frac{1}{3}} |\Delta_0^{+} \pi^0> + \sqrt{\frac{1}{6}} |\Delta_0^0 \pi^+> \right) \\ & + & \sqrt{b} \left(-\sqrt{\frac{1}{2}} |\Delta_0^{++} \pi^-> -\sqrt{\frac{1}{3}} |\Delta_0^{+} \pi^0> + \sqrt{\frac{1}{6}} |\Delta_0^0 \pi^+> \right) \end{split}$$

• The π^+N cloud doubles π^0N cloud in the proton.

Regge approach: a=0.105,

Nikolaev et al., PRD60 (1999)

b=0.015

Backgrounds for different "tags" will be different

Fig. 2. Left: comparison of the calculated Q^2 -dependence of the fractional cross section of neutron production with data from [2]. Right: the tractional cross section calculated at $Q^2 = 1.5 \text{ GeV}^2$ and $\nu = 8 \text{ GeV}$.

B. Kopeliovich et al., 16th EDS Blois (2015), arXiv:1510.08868 [hep-ph]

- <u>Charged</u> pion exchange has less background from Pomeron and Reggeon processes
- Measuring isospin dependence (p-n difference) will assist identification of Sullivan process
- Contribution from pion pole larger at smaller x
 - Study pole dependence to emphasize meson contribution

A lot of fascinating questions remain!

- Understand diffractive difference
- Identify/subtract diffractive component (from all targets)
- Identify/subtract/learn about theoretical "backgrounds"
 - Deploy neutron and proton (and other?) beams
 - Deploy multiple tags p,n,.., study isospin expectations

- Expand kinematic range - in x,Q,t,z,...

- Will need close experiment-theory collaboration, large and disparate data set to disentangle
- COMPASS data will help

The EIC will enable all of this [©] Analysis of preliminary ZEUS (leading proton tag) data by <u>Szczurek</u>, <u>Nikolaev</u> and <u>Speth</u>, Phys. Lett. B428 (1998) 383-390

Jetterson Lab

Suppose we DO manage to cleanly select Sullivan process targets....

- Create effective pion (and kaon) beams!
- What can we do with these at the EIC...?...

EIC – Versatility and Luminosity are Key

Why would measurements with (Sullivan) pion and kaon targets be feasible at an EIC?

- $L_{EIC} = 10^{34} = 1000 \text{ x } L_{HERA}$
- Detection fraction @ EIC in general much higher than at HERA
- Fraction of proton wave function related to pion Sullivan process is roughly 10⁻³ for a small –t bin (0.02).
- Hence, pion data @ EIC should be comparable or better than the proton data @ HERA, or the 3D nucleon structure data @ COMPASS
- If we can convince ourselves we can map pion (kaon) structure for -t < 0.06 (0.9) GeV², we gain at least a decade as compared to HERA/COMPASS.

Ratio of the F_2 structure function related to the pion Sullivan process as compared to the proton F_2 structure function in the low-t vicinity of the pion pole, as a function of Bjorken-x (for JLab TDIS experiment)

Inclusive Structure Function Measurements

Proton –

- Well understood
- F₂^p measured over 5 orders of magnitude in x, Q²

e,e'p

e,e'π

- F₂^p measured by dozens of experiments at numerous laboratories and for decades
- F_L measurements also exist
- Well described by DGLAP
 - Backbone of global pdf fits

Pion –

- n Two ovporimon
- Two experiments
 Limited kinematics (low x, moderate x,
- scant Q² reach at same x)
- No F_L data
- Some global pdf fitting efforts
- EIC will facilitate mapping out pion (and kaon) SFs and pdfs over a broad kinematic range! (see numerous talks at this meeting)
- What is the pionic contribution to the proton SFs and pdfs?

Further Prospects for Pion Structure Measurements at the EIC 14

Jefferson Lab

Effective Pion Target

e γ* p π p,n

TDIS:

X = reconstructed mass of recoiling hadronic state -(p,n)

TDES!:

Detect <u>all</u> final state particles – select exclusive states

Example: Pion GPD studies... T-DVCS, DV-TCS?

Deeply Virtual Compton Scattering from a pion

Elastic J/ Ψ production near threshold at an EIC

At an EIC a study of the Q² dependence in the threshold region is possible

< JSA

Office of

ENERG

Elastic Y production near threshold at an EIC

At an EIC a study of the Q² dependence in the threshold region is possible

Elastic J/ Ψ production <u>off the pion</u> at an EIC

Science

FIG. 7: Differential cross section for pion production at $\sqrt{s} = 140$ GeV as a function of x_B for bins in Q^2 and z measurable at | an EIC.

Aschenauer, Borsa, Sassot, Van Hulse, Phys. Rev. D 99, 094004 (2019)

SIDIS multiplicities will be measured (here pictured for pion production)

High precision, good statistics and multiplicites

Can think about *pion* TMDs from tagging at same time

Cross section down ~10³ – need luminosity, but maybe possible

Quark Fragmentation into Pions and Kaons

- Timelike analog of mass acquisition measure fragmentation of quarks into pions and kaons
- \Box (Proton) projections for integrated luminosity = 10 fb⁻¹

M. Diefenthaler (R. Ent)

- High statistics... pion fragmentation possible

□ EIC can provide precision data at large x (z>0.5) and transverse momentum (as picked up on the fragmentation process) of k_T=0.1, 0.3, 0.5

Summary: rich – and novel – physics to explore

- Solve mysteries left by HERA
 - Interplay of diffractive component
 - -Pomeron, Reggeon, mesonic content of the nucleon
- Create effective pion (kaon) targets
 - Multiple targets created by robust, varied tagging capability
- Facilitates <u>new</u> measurements
 - -Meson pdfs
 - Mesonic component of nucleon pdfs
 - Separate, study off-shell, Q, dependencies
 - -3D structure of the Pion (TMDs, GPDs)
 - -J/Psi production from the pion
 - Fragmentation studies
 - What would you study with a pion target/beam?

Thanks!

Further Prospects for Pion Structure Measurements at the ${\rm EIC}_{23}$

Fracture Functions Allow for Rigorous Description of TDIS

(conditional pdfs, ~diffractive pdfs)

(a)

f(x) Parton distribution (b)

- (d) $f(x, z, p_T)$ Conditional parton distribution
- Particular, conditional case of DIS
- Defined through factorization theorem, universal
 Factorization for FF in SIDIS has been proven at collinear and soft level
- Hard cross section same as inclusive
- DGLAP evolution same as PDFs
- Can be extracted from data

- (a) Inclusive DIS e N \rightarrow e' + X
- (b) Parton distribution f(x) describes the probability distribution of quarks with respect to their light-cone momentum fraction x in the target
- (c) Conditional cross section with an identified hadron in the target fragmentation region eN → e' + h(target) + X
- (d) Fracture function, or conditional parton distribution describes the probability to find a hadron h in the target fragmentation region, with light-cone momentum fraction 1 z and transverse momentum p_T , after removing a quark with light-cone momentum fraction x.
- L. Trentadue and G. Veneziano, Phys. Lett. B 323 (1994) 201
- D. Graudenz, Nucl. Phys. B432, (1994) 351
- A. Berera and D.E. Soper, Phys. Rev. D53 (1996) 6162
- D. De Florian and R. Sassot, Phys. Rev. D56 (1997) 426
- J.C. Collins, Phys. Rev. D57 (1998) 3051

Fracture Functions – nucleon structure and dynamics different physical interpretations in different regions of x

$p \rightarrow p \quad x \ll 1$

Pomeron exchange

$p \rightarrow n \text{ or } n \rightarrow p \quad x^{\sim}0.1$

charged pion exchange

<u>x > 0.3</u>

hadronization of nucleon with "hole" in light cone wavefunction

Non-perturbative interactions: χ SB fields in QCD vacuum, color confinement

Measuring Fracture Functions

 $\frac{\text{Definition}}{f(x,z,p_T)} =$ probability to find hadron in target
fragmentation region....
("tag" the recoil proton)
.....after removing a quark with light
cone momentum fraction x
(standard DIS F₂(x))

<u>Measure</u> tagged DIS/untagged (inclusive) DIS

Approach to data analysis Measure tagged:untagged (inclusive electron) ratio R^{T:} R

$$R^T = rac{d^4\sigma(ep o e^{'}Xp^{'})}{dxdQ^2dzdt} / rac{d^2\sigma(ep o e^{'}X)}{dxdQ^2} \Delta z \Delta t \sim rac{F_2^T(x,Q^2,z,t)}{F_2^p(x,Q^2)} \Delta z \Delta t.$$

Proton Structure Function well known, use to obtain:

$$F_2^T(x,Q^2,z,t) = \frac{R^T}{\Delta z \Delta t} F_2^p(x,Q^2).$$

NOTE! This tagged structure function is the unambiguous result!

- Mesonic contribution to nucleon structure function
- Pomeron?
- Look for impact on sea asymmetry

Additional considerations for pion flux:

- Pole extrapolation
- t,z dependence
- p, n difference
- Theory models