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General picture

Q2

High

Low

The QCD Holy Grail: the understanding of 
hadrons in terms of its elementary excitations; 
namely, quarks and gluons! 

What happens 
down here?  

ConfinementConfinement

DCSBDCSB

Colored bound states 
have never been seen 

to exist as particles 
in nature 

Chiral symmetry
appears dynamically 

violated in the 
Hadron spectrum

Emergent phenomena playing a dominant role in the real world 
dominated by the IR dynamics of QCD.
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Antecedents:

GPD definition:
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Muller et al., Fortchr. Phys. 42, 101 (1994)
Radyushkin, Phys. Lett. B380, 417 (1996) 

Ji, Phys. Rev. Lett. 78, 610 (1997)



  

Antecedents:

GPDs in the Schwinger-Dyson and 
Bethe-Salpeter approach 
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Can be done!
…and closed-form expressions can be

found in simple cases.   



  

cf. Ding’s & Mezrag’s talks!
Symmetry-preserving contributions play a crucial role

C. Mezrag et al., Phys.Lett. B 741(2015)190
M. Ding et al., Chin.Phys. C (Lett)44(2020) 031002
M. Ding et al., Phys. Rev. D 101 (2020) 054014 



  

GPD overlap approach:

The overlap quark GPD for a meson in the DGLAP kinematic region reads  
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GPD overlap approach:

in terms of the meson LFWF  
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which are the components in an expansion of the meson on a Fock basis, after 
light-front quantization. 

The overlap quark GPD for a meson in the DGLAP kinematic region reads  
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Bethe-Salpeter amplitudes and quark 
propagators can be obtained from applying 
continuum functional methods (DSE,BSE) 
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or can be modeled as previously indicated.

Asymptotic case:

Nakanishi weight
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GPD overlap approach:
6

Bethe-Salpeter amplitudes and quark 
propagators can be obtained from applying 
continuum functional methods (DSE,BSE) 
or can be modeled as previously indicated.

The overlap valence-quark GPD for a meson in the DGLAP kinematic region reads  

Encoding the correlation of kinematical variables

Forward limit:

N. Chouika et al., PLB780(2018)287

Results from the overlap and diagrammatic 
approaches compare very well (tested at the level 
of the PDF).   

symmetry under:                          is a key feature!

Nakanishi weight

Asymptotic case:



  

Integral representation of LFWFs:

The Nakanishi weight           can be 
modeled... 
...Or taken with BSE solutions as 
an input!  

ρK (z)
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cf. Raya’s talk! 



  

Phenomelogical model: b0
π
=0.1 , z0

π
=0.73 ;

Integral representation of LFWFs: pion case
8

Asymptotic case:

Nakanishi weight parametrization: 

S-S Xu et al., PRD97(2018)094014



  

b0
π
=0.275 , z0

π
=1.23 ;
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Integral representation of LFWFs:
Nakanishi weight parametrization: 

Phenomelogical model:
Realistic case:

b0
π
=0.1 , z0

π
=0.73 ;

Asymptotic case:

See Khépani’s talk: PDF as a benchmark!

S-S Xu et al., PRD97(2018)094014



  

GPD overlap approach: pion case  

The overlap valence-quark GPD for a meson in the DGLAP kinematic region reads  
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Phenomenological model



  

The overlap valence-quark GPD for a meson in the DGLAP kinematic region reads  
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Phenomenological model

Realistic case

GPD overlap approach: pion case  



  

The overlap valence-quark GPD for a meson in the DGLAP kinematic region reads  
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Phenomenological model

Realistic case

Focus on the forward limit: the PDF that, in the overlap representation at low Fock space, 
can be expressed in terms of 2-body LFWFs at a given hadronic scale   

0

GPD overlap approach: pion case  



  

The overlap valence-quark GPD for a meson in the DGLAP kinematic region reads  
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Focus on the forward limit: the PDF that, in the overlap representation at low Fock space, 
can be expressed in terms of 2-body LFWFs at a given hadronic scale   

0

GPD overlap approach: pion case  

LFWF leading to asymptotic PDA



  

The overlap valence-quark GPD for a meson in the DGLAP kinematic region reads  

Focus on the forward limit: the PDF that, in the overlap representation at low Fock space, 
can be expressed in terms of 2-body LFWFs at a given hadronic scale   

0

GPD overlap approach: pion case  

LFWF leading to asymptotic PDA

Direct computation of 
Mellin moments: 

DCSB-induced hardening

M. Ding et al., PRD01(2020)054014

10

cf. Ding’s & Chang’s talk
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Comparison with experiment: DGLAP evolution

Integro-differential equation for the evolution of non-singlet and singlet combinations

DGLAP non-skewed quark GPDs

ξ=0 ; x , y>0

mixing of gluon and and singlet quark combination 

pseudo-data
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Comparison with experiment: DGLAP evolution
pseudo-data

Integro-differential equation for the evolution of non-singlet and singlet combinations 
that, in Mellin space, reads

Forward limit: Parton DFs

ξ=0 , t=0 ; x , y>0

Mellin’s moments anomalous dimensions 

Let us focus on the valence-quark sector
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Comparison with experiment: DGLAP evolution
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−∫
0

1

dx xnP(x) = γ
(n)

defines the coupling renormalisation scheme (and evolution depends on it because of truncation) Λ

pseudo-data
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−∫
0

1

dx xnP(x) = γ
(n)

defines the coupling renormalisation scheme (and evolution depends on it because of truncation) Λ

⟨xn(z)⟩ = ⟨xn(z0)⟩exp(−
γ0
n

4 π
∫
z0

z

dsα(s))
The scheme can be defined in such a way that one-loop DGLAP is exact at all orders (Grunberg's 
effective charge). And we are thus left with a would-be evolution from the nonperturbative 
hadronic scale up to the experimental one.  

pseudo-data



  

Comparison with experiment: DGLAP evolution

Integro-differential equation for the evolution of non-singlet and singlet combinations 
that, in Mellin space, reads

Forward limit: Parton DFs

ξ=0 , t=0 ; x , y>0

Mellin’s moments anomalous dimensions 

Let us focus on the singlet sector:
∫
z0

z

dsα (s)
Basis transformation

pseudo-data
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Integro-differential equation for the evolution of non-singlet and singlet combinations 
that, in Mellin space, reads

Forward limit: Parton DFs

ξ=0 , t=0 ; x , y>0

Mellin’s moments anomalous dimensions 

Let us focus on the singlet sector:
∫
z0

z

dsα (s)

At the hadronic scale,      , all the 
momentum is carried out by valence 
quarks!  

Comparison with experiment: DGLAP evolution
pseudo-data

ζ H
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Comparison with experiment: DGLAP evolution
pseudo-data

Therefore: 

All the Mellin moments for gluon, sea- and valence-quarks can be obtained at 
any scale from the evolution of those computed at the hadronic scale for the 
valence-quark (in DSE-BSE or LFWF approach). One only needs to know the 
first valence-quark moment a this scale. E.g.,   

In the case of the momentum fraction averages, the expressions are very 
simple:

Sum rule:
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Comparison with experiment: DGLAP evolution
pseudo-data

Data from Novikov et al., arXiv:2002.02902:
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Comparison with experiment: PI effective charge

D.B et al., PRD96(2017)054026
J.R-Q et al., FBS59(2018)121
Z-F Cui et al., arXiv:1912.08232

Process-independent charge, 
defined as an analogue of the 
QED Gell-Man-low, on the 
basis of the PT-BFM truncation 
of DSEs in the gluon sector

Gauge-independent, no 
Landau pole, fully determined 
by the gluon sector, known to 
unify a wide range of 
observables, it compares very 
well with the Bjorken sum rule 
charge… 

15

pseudo-data
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Assumption: The PI charge and the one for the all-order DF evolution correspond with 
each other within the IR, while at large momenta the latter is defined by the 
phenomenological value of                   MeV.  ΛQCD=234

pseudo-data

Phenomenological running

ζ H=mG=0.331(2) GeV
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[Aicher et al., PRL105(2010)252003]

Comparison with experiment: 

After identifying               , all the scales (and the evolution between them) 
appear thus fixed. And the agreement with E615 data is perfect!!! 

m0≡ζH

Then, one can evolve the pion PDF, by using the effective charge, from the hadronic scale up 
to the relevant one for the E615 experiment: 

ζH≡mG→ζ2=5.2 GeV

⟨x (z )⟩ = ⟨x (zH )⟩exp(− γ
(1)

4 π
∫
zH

z

dsα(s))pseudo-data

pseudo-data
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[Aicher et al., PRL105(2010)252003]

Comparison with experiment: 

Then, one can evolve the pion PDF, by using the effective charge, from the hadronic scale up 
to the relevant one for the E615 experiment: 

ζH≡mG→ζ2=5.2 GeV

⟨x (z )⟩ = ⟨x (zH )⟩exp(− γ
(1)

4 π
∫
zH

z

dsα(s))pseudo-data

Lattice: [Sufian et al., arXiv:2001.04960]



  

Evolved GPDs: pion case  

The overlap valence-quark GPD for a meson in the DGLAP kinematic region reads  
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GeVζ0=ζH=0.33 →ζ5=5.2 GeV



Pion realistic picture: Electromagnetic Form Factor 
18



Kaon preliminary results:  

Identifying first the LFWF (cf. Khépani’s talk)

one obtains the DGLAP GPD:

and the electromagnetic form factor. 
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A word about gravitational form factors:

First, polynomiality:
(Time reversal symmetry  
implies k even)

If one defines a function D such that:

Specializing for the case m=1

PW D-term 
(Pure ERBL contribution)

20



A word about gravitational form factors:

Isospin-symmetric limit

Latt.ice data: D. Brommel, Ph.D. thesis, U. Regensburg, Germany (2007), DESY-THESIS-2007-023
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A word about gravitational form factors:

3/2-Gegenbauer expansion

Only the first coefficient 
is needed! 

LFWF + overlap approach cannot give access to the second gravitational moment. The 
Radon transform inversion of the DGLAP GPD cannot either (as it is nothing but a D-
term contribution).

A possible way-out is considering unsubtracted t-channel dispersion relations to provide 
with a representation of the D-term form factor 
[See Pasquini et al., PLB739(2014)133, precisely determining         for a nucleon case]

On the other hand, the soft-pion theorem opens a window to fully constraint the D-term 
and thus this second gravitational factor can be estimated at t=0. E.g., in the algebraic 
asymptotic model, one is left at the hadronic scale with:          

20

∫
−1

1
dz z D( z ,0)=−1



Conclusions

Owing to a sensible parametrisation of the BSA grounded 
on the so-called Nakanishi representation, one is left with 
a flexible algebraic model for the LFWF in terms of a 
spectral density. 
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Conclusions

Owing to a sensible parametrisation of the BSA grounded 
on the so-called Nakanishi representation, one is left with 
a flexible algebraic model for the LFWF in terms of a 
spectral density. 

A direct calculation of the PDF from realistic quark gap and 
Bethe-Salpeter equations' solutions (in the forward 
kinematical limit) delivers a benchmark result to identify the 
spectral density which corresponds to the realistic LFWF.   

The overlap representation provides with a simple way to 
calculate beyond the forward kinematic limit, and thus 
obtain the GPD, although only in the DGLAP region. 

A recently proposed PI effective charge can be used to make the 
DGLAP GPD evolve from the hadronic scale (where quasi-particle 
DSE's solutions are the correct degrees-of-freedom) up to any other 
relevant scale.  

Thank you!!
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