Pion and kaon parton distributions from their lightfront wave functions

José Rodríguez-Quintero
In collaboration with:
C. Lei, D. Binosi, C. Mezrag,
K. Raya, C. D. Roberts, M. Ding ...

Pion and Kaon Structure Functions at the EIC; CFNS/Stony Brook U.: June 2-5, 2020.

General picture

pQCD

$$
\pi, \rho, \omega \ldots
$$ High

The QCD Holy Grail: the understanding of hadrons in terms of its elementary excitations; namely, quarks and gluons!

Confinement

3q-core+MB-cloud

GPD definition:

$$
\begin{aligned}
& H_{\pi}^{q}(x, \xi, t)= \\
& \frac{1}{2} \int \frac{\mathrm{~d} z^{-}}{2 \pi} e^{i \times P^{+} z^{-}}\left\langle\pi, P+\frac{\Delta}{2}\right| \bar{q}\left(-\frac{z}{2}\right) \gamma^{+} q\left(\frac{z}{2}\right)\left|\pi, P-\frac{\Delta}{2}\right\rangle_{\substack{z^{+}+0 \\
z_{\perp}=0}}
\end{aligned}
$$

$$
\text { with } t=\Delta^{2} \text { and } \xi=-\Delta^{+} /\left(2 P^{+}\right) \text {. }
$$

References

Muller et al., Fortchr. Phys. 42, 101 (1994) Radyushkin, Phys. Lett. B380, 417 (1996) Ji, Phys. Rev. Lett. 78, 610 (1997)

■ From isospin symmetry, all the information about pion GPD is encoded in $H_{\pi^{+}}^{u}$ and $H_{\pi^{+}}^{d}$.
■ Further constraint from charge conjugation:

$$
H_{\pi^{+}}^{u}(x, \xi, t)=-H_{\pi^{+}}^{d}(-x, \xi, t) .
$$

GPDs in the Schwinger-Dyson and Bethe-Salpeter approach

$$
\left\langle x^{m}\right\rangle^{q}=\frac{1}{2\left(P^{+}\right)^{n+1}}\left\langle\pi, P+\frac{\Delta}{2}\right| \bar{q}(0) \gamma^{+}\left(i \overleftrightarrow{D}^{+}\right)^{m} q(0)\left|\pi, P-\frac{\Delta}{2}\right\rangle
$$

- Compute Mellin moments of the pion GPD H.

GPDs in the Schwinger-Dyson and Bethe-Salpeter approach

$$
\left\langle x^{m}\right\rangle^{q}=\frac{1}{2\left(P^{+}\right)^{n+1}}\left\langle\pi, P+\frac{\Delta}{2}\right| \bar{q}(0) \gamma^{+}\left(i \overleftrightarrow{D}^{+}\right)^{m} q(0)\left|\pi, P-\frac{\Delta}{2}\right\rangle
$$

- Compute Mellin moments of the pion GPD H.
- Triangle diagram approx.

Antecedents:

GPDs in the Schwinger-Dyson and Bethe-Salpeter approach

$$
\left\langle x^{m}\right\rangle^{q}=\frac{1}{2\left(P^{+}\right)^{n+1}}\left\langle\pi, P+\frac{\Delta}{2}\right| \bar{q}(0) \gamma^{+}\left(i \overleftrightarrow{D}^{+}\right)^{m} q(0)\left|\pi, P-\frac{\Delta}{2}\right\rangle
$$

- Compute Mellin moments of the pion GPD H.
- Triangle diagram approx.
- Resum infinitely many contributions.

Dyson - Schwinger equation

Antecedents:

$$
\left\langle x^{m}\right\rangle^{q}=\frac{1}{2\left(P^{+}\right)^{n+1}}\left\langle\pi, P+\frac{\Delta}{2}\right| \bar{q}(0) \gamma^{+}\left(i \overleftrightarrow{D}^{+}\right)^{m} q(0)\left|\pi, P-\frac{\Delta}{2}\right\rangle
$$

GPDs in the Schwinger-Dyson and Bethe-Salpeter approach

- Compute Mellin moments of the pion GPD H.
- Triangle diagram approx.
- Resum infinitely many contributions.

Bethe - Salpeter equation

Antecedents:

GPD asymptotic algebraic model:

- Expressions for vertices and propagators:

$$
\begin{aligned}
S(p) & =[-i \gamma \cdot p+M] \Delta_{M}\left(p^{2}\right) \\
\Delta_{M}(s) & =\frac{1}{s+M^{2}} \\
\Gamma_{\pi}(k, p) & =\gamma_{5} \frac{M}{f_{\pi}} M^{2 \nu} \int_{-1}^{+1} \mathrm{~d} z \rho_{\nu}(z)\left[\Delta_{M}\left(k_{+z}^{2}\right)\right]^{\nu} \\
\rho_{\nu}(z) & =R_{\nu}\left(1-z^{2}\right)^{\nu}
\end{aligned}
$$

with R_{ν} a normalization factor and $k_{+z}=k-p(1-z) / 2$.

Chang et al., Phys. Rev. Lett. 110 120nni (nn+~1

Antecedents:

GPD asymptotic algebraic model:

- Analytic expression in the DGLAP region.
$H_{x \geq \xi}^{\mu}(x, \xi, 0)=\frac{48}{5}\left\{\frac{3\left(-2(x-1)^{4}\left(2 x^{2}-5 \xi^{2}+3\right) \log (1-x)\right)}{20\left(\xi^{2}-1\right)^{3}}\right.$
$\frac{3\left(+4 \xi\left(15 x^{2}(x+3)+(19 x+29) \xi^{4}+5(x(x(x+11)+21)+3) \xi^{2}\right) \tanh ^{-1}\left(\frac{(x-1)}{x-\xi^{2}}\right.\right.}{20\left(\xi^{2}-1\right)^{3}}$ $20\left(\xi^{2}-1\right)^{3}$
$+\frac{3\left(x^{3}(x(2(x-4) x+15)-30)-15(2 x(x+5)+5) \xi^{4}\right) \log \left(x^{2}-\xi^{2}\right)}{20\left(\xi^{2}-1\right)^{3}}$
$+\frac{3\left(-5 x(x(x(x+2)+36)+18) \xi^{2}-15 \xi^{6}\right) \log \left(x^{2}-\xi^{2}\right)}{20\left(\xi^{2}-1\right)^{3}}$
$+\frac{3\left(2(x-1)\left((23 x+58) \xi^{4}+(x(x(x+67)+112)+6) \xi^{2}+x(x((5-2 x) x+15)+\xi\right.\right.}{20\left(\xi^{2}-1\right)^{3}}$

5) $\xi^{4}+\frac{\left.\left.10 x(3 x(x+5)+11) \xi^{2}\right) \log \left(1-\xi^{2}\right)\right)}{\left.{ }^{2}-1\right)^{3}}$

- Only two parameters:
- Dimensionf.

Can be done!

- Dimens asympt

Antecedents:

...and closed-form expressions can be found in simple cases.

The full model:

$$
\begin{aligned}
2(P \cdot n)^{m+1}\left\langle x^{m}\right\rangle^{u}= & \operatorname{tr}_{C F D} \int \frac{\mathrm{~d}^{4} k}{(2 \pi)^{4}}(k \cdot n)^{m} \tau_{+} i \Gamma_{\pi}\left(\eta(k-P)+(1-\eta)\left(k-\frac{\Delta}{2}\right), P-\frac{\Delta}{2}\right) \\
& S\left(k-\frac{\Delta}{2}\right) i \gamma \cdot n S\left(k+\frac{\Delta}{2}\right) \\
& \tau_{-} i \bar{\Gamma}_{\pi}\left((1-\eta)\left(k+\frac{\Delta}{2}\right)+\eta(k-P), P+\frac{\Delta}{2}\right) S(k-P)
\end{aligned}
$$

$$
\begin{aligned}
2(P \cdot n)^{m+1}\left\langle x^{m}\right\rangle^{u}= & \operatorname{tr} \text { CFD } \int \frac{\mathrm{d}^{4} k}{(2 \pi)^{4}}(k \cdot n)^{m} \tau_{+} i \Gamma_{\pi}\left(\eta(k-P)+(1-\eta)\left(k-\frac{\Delta}{2}\right), P-\frac{\Delta}{2}\right) \\
& S\left(k-\frac{\Delta}{2}\right) \tau_{-} \frac{\partial}{\partial k} \bar{\Gamma}_{\pi}\left((1-\eta)\left(k+\frac{\Delta}{2}\right)+\eta(k-P), P+\frac{\Delta}{2}\right) S(k-P)
\end{aligned}
$$

GPD asymptotic algebraic model (completion):

21) +3$\left.) \xi^{2}\right) \tanh ^{-1}\left(\frac{(x-1)}{x-\xi^{2}}\right.$

cf. Ding's \& Mezrag's talks!

Symmetry-preserving contributions play a crucial role

$$
q(x)=H^{q}(x, 0,0)
$$

C. Mezrag et al., Phys.Lett. B 741(2015)190
M. Ding et al., Chin.Phys. C (Lett)44(2020) 031002
M. Ding et al., Phys. Rev. D 101 (2020) 054014

$$
\begin{aligned}
& 2(P \cdot n)^{m+1}\left\langle x^{m}\right\rangle \\
& q(x) \equiv q(1-x) \\
& \tau_{-} i \bar{\Gamma}_{\pi}((1-. \\
& 2(P \cdot n)^{m+1}\left\langle x^{m}\right\rangle^{u}=\operatorname{tr}_{\text {CFD }} \int \frac{\mathrm{d}^{4} k}{(2 \pi)^{4}}(k \cdot n)^{m} \tau_{+} i \Gamma_{\pi}(\eta(k-P)+1 \\
& S\left(k-\frac{\Delta}{2}\right) \tau_{-} \frac{\partial}{\partial k} \bar{r}_{\pi}\left((1-\eta)\left(k+\frac{\Delta}{2}\right)+\eta(k-P), P+\frac{\Delta}{2}\right) S(k-P)
\end{aligned}
$$

GPD overlap approach:

The overlap quark GPD for a meson in the DGLAP kinematic region reads

$$
\begin{aligned}
H^{q}(x, \xi, t) & =\sum_{N, \beta} \sqrt{1-\xi^{2-N}} \sqrt{1+\xi^{2-N}} \sum_{a} \delta_{a, q} \int[\mathrm{~d} \bar{x}]_{N}\left[\mathrm{~d}^{2} \overline{\mathbf{k}}_{\perp}\right]_{N} \delta\left(x-\bar{x}_{a}\right) \\
& \times \Psi_{N, \beta}^{*}\left(\hat{x}_{1}^{\prime}, \hat{\mathbf{k}}_{\perp 1}^{\prime}, \ldots, \hat{x}_{a}^{\prime}, \hat{\mathbf{k}}_{\perp a}^{\prime}, \ldots\right) \Psi_{N, \beta}\left(\tilde{x}_{1}, \tilde{\mathbf{k}}_{\perp 1}, \ldots, \tilde{x}_{a}, \tilde{\mathbf{k}}_{\perp a}, \ldots\right),
\end{aligned}
$$

$$
[\mathrm{d} x]_{N}=\prod_{i=1}^{N} \mathrm{~d} x_{i} \delta\left(1-\sum_{i=1}^{N} x_{i}\right),
$$

$$
\left[\mathrm{d}^{2} \mathbf{k}_{\perp}\right]_{N}=\frac{1}{\left(16 \pi^{3}\right)^{N-1}} \prod_{i=1}^{N} \mathrm{~d}^{2} \mathbf{k}_{\perp i} \delta^{2}\left(\sum_{i=1}^{N} \mathbf{k}_{\perp i}-\mathbf{P}_{\perp}\right)
$$

GPD overlap approach:

The overlap quark GPD for a meson in the DGLAP kinematic region reads

$$
\begin{aligned}
H^{q}(x, \xi, t) & =\sum_{N, \beta}{\sqrt{1-\xi^{2}}}^{2-N} \sqrt{1+\xi^{2-N}} \sum_{a} \delta_{a, q} \int\left[\mathrm{~d} \bar{x}_{N}\left[\mathrm{~d}^{2} \overline{\mathbf{k}}_{\perp}\right]_{N} \delta\left(x-\bar{x}_{a}\right)\right. \\
& \times \Psi_{N, \beta}^{*}\left(\hat{x}_{1}^{\prime}, \hat{\mathbf{k}}_{\perp 1}^{\prime}, \ldots, \hat{x}_{a}^{\prime}, \hat{\mathbf{k}}_{\perp a}^{\prime}, \ldots\right) \Psi_{N, \beta}\left(\tilde{x}_{1}, \tilde{\mathbf{k}}_{\perp 1}, \ldots, \tilde{x}_{a}, \tilde{\mathbf{k}}_{\perp a}, \ldots\right),
\end{aligned}
$$

in terms of the meson LFWF

$$
[\mathrm{d} x]_{N}=\prod_{i=1}^{N} \mathrm{~d} x_{i} \delta\left(1-\sum_{i=1}^{N} x_{i}\right),
$$

$$
\left[\mathrm{d}^{2} \mathbf{k}_{\perp}\right]_{N}=\frac{1}{\left(16 \pi^{3}\right)^{N-1}} \prod_{1}^{N} \mathrm{~d}^{2} \mathbf{k}_{\perp i} \delta^{2}\left(\sum_{i=1}^{N} \mathbf{k}_{\perp i}-\mathbf{P}_{\perp}\right)
$$

$$
|H ; P, \lambda\rangle=\sum_{N, \beta} \int[\mathrm{~d} x]_{N}\left[\mathrm{~d}^{2} \mathbf{k}_{\perp}\right]_{N} \Psi_{N, \beta}^{\lambda}\left(x_{1}, \mathbf{k}_{\perp 1}, \ldots, x_{N}, \mathbf{k}_{\perp N}\right)\left|N, \beta ; k_{1}, \ldots, k_{N}\right\rangle
$$

which are the components in an expansion of the meson on a Fock basis, after light-front quantization.

GPD overlap approach:

The overlap valence-quark GPD for a meson in the DGLAP kinematic region reads

$$
H^{q}(x, \xi, t)=\int \frac{\mathrm{d}^{2} \mathbf{k}_{\perp}}{16 \pi^{3}} \Psi_{u \bar{f}}^{*}\left(\frac{x-\xi}{1-\xi}, \mathbf{k}_{\perp}+\frac{1-x}{1-\xi} \frac{\Delta_{\perp}}{2}\right) \Psi_{u \bar{f}}\left(\frac{x+\xi}{1+\xi}, \mathbf{k}_{\perp}-\frac{1-x}{1+\xi} \frac{\Delta_{\perp}}{2}\right)
$$

GPD overlap approach:

The overlap valence-quark GPD for a meson in the DGLAP kinematic region reads

$$
\begin{aligned}
& H^{q}(x, \xi, t)=\int \frac{\mathrm{d}^{2} \mathbf{k}_{\perp}}{16 \pi^{3}} \Psi_{u \bar{f}}^{*}\left(\frac{x-\xi}{1-\xi}, \mathbf{k}_{\perp}+\frac{1-x}{1-\xi} \frac{\Delta_{\perp}}{2}\right) \Psi_{u \bar{f}}\left(\frac{x+\xi}{1+\xi}, \mathbf{k}_{\perp}-\frac{1-x}{1+\xi} \frac{\Delta_{\perp}}{2}\right) \\
& 2 P^{+} \Psi_{\uparrow \downarrow}\left(k^{+}, \mathbf{k}_{\perp}\right)=\int \frac{\mathrm{d} k^{-}}{2 \pi} \operatorname{Tr}\left[\gamma^{+} \gamma 5 \chi(k, P)\right]
\end{aligned}
$$

GPD overlap approach:

The overlap valence-quark GPD for a meson in the DGLAP kinematic region reads

$$
\begin{aligned}
& H^{q}(x, \xi, t)=\int \frac{\mathrm{d}^{2} \mathbf{k}_{\perp}}{16 \pi^{3}} \Psi_{u \bar{f}}^{*}\left(\frac{x-\xi}{1-\xi}, \mathbf{k}_{\perp}+\frac{1-x}{1-\xi} \frac{\Delta_{\perp}}{2}\right) \\
& \Psi_{u \bar{f}}\left(\frac{x+\xi}{1+\xi}, \mathbf{k}_{\perp}-\frac{1-x}{1+\xi} \frac{\Delta_{\perp}}{2}\right) \\
& \Gamma_{\pi}(q, P)=i N \gamma_{5} \int_{0}^{\infty} \mathrm{d} \omega \int_{-1}^{1} \mathrm{~d} z \frac{\rho(\omega, z) M^{2}}{\left(q-\frac{1-z}{2} P\right)^{2}+M^{2}+\omega} \\
& \chi(q, P)=S(q) \\
& \Gamma_{\pi}(q, P) S(q-P)
\end{aligned} 2 P^{+} \Psi_{\uparrow \downarrow}\left(k^{+}, \mathbf{k}_{\perp}\right)=\int \frac{\mathrm{d} k^{-}}{2 \pi} \operatorname{Tr}\left[\gamma^{+} \gamma \gamma \chi(k, P)\right] \quad .
$$

Bethe-Salpeter amplitudes and quark propagators can be obtained from applying continuum functional methods (DSE,BSE)

GPD overlap approach:

The overlap valence-quark GPD for a meson in the DGLAP kinematic region reads

$$
\begin{aligned}
& H^{q}(x, \xi, t)=\int \frac{\mathrm{d}^{2} \mathbf{k}_{\perp}}{16 \pi^{3}} \Psi_{u \bar{f}}^{*}\left(\frac{x-\xi}{1-\xi}, \mathbf{k}_{\perp}+\frac{1-x}{1-\xi} \frac{\Delta_{\perp}}{2}\right) \Psi_{u \bar{f}}\left(\frac{x+\xi}{1+\xi}, \mathbf{k}_{\perp}-\frac{1-x}{1+\xi} \frac{\Delta_{\perp}}{2}\right) \\
& S(q)=[-i \gamma \cdot q+M] /\left[q^{2}+M^{2}\right] \quad \text { Nakanishi weight } \\
& \Gamma_{\pi}(q, P)=i N \gamma_{5} \int_{0}^{\infty} \mathrm{d} \omega \int_{-1}^{1} \mathrm{~d} z \frac{\rho(\omega, z) M^{2}}{\left(q-\frac{1-z}{2} P\right)^{2}+M^{2}+\omega}
\end{aligned}{2 P^{+} \Psi_{\uparrow \downarrow}\left(k^{+}, \mathbf{k}_{\perp}\right)=\int \frac{\mathrm{d} k^{-}}{2 \pi} \operatorname{Tr}\left[\gamma^{+} \gamma \delta \chi(k, P)\right]}^{l} l
$$

Asymptotic case: $\rho(w, z)=\delta(w)\left(1-z^{2}\right)$
Bethe-Salpeter amplitudes and quark propagators can be obtained from applying continuum functional methods (DSE,BSE) or can be modeled as previously indicated.

GPD overlap approach:

The overlap valence-quark GPD for a meson in the DGLAP kinematic region reads

$$
\begin{aligned}
& H^{q}(x, \xi, t)=30 \frac{(1-x)^{2}\left(x^{2}-\xi^{2}\right)}{\left(1-\xi^{2}\right)^{2}} \frac{1}{(1+z)^{2}}\left(\frac{3}{4}+\frac{1}{4} \frac{1-2 z}{1+z} \frac{\operatorname{arctanh} \sqrt{\frac{z}{1+z}}}{\sqrt{\frac{z}{1+z}}}\right) \\
& z=\frac{t}{4 M^{2}} \frac{(1-x)^{2}}{1-\xi^{2}} \quad \text { Encodina the correlation of kinematical variables }
\end{aligned}
$$

$$
S(q)=[-i \gamma \cdot q+M] /\left[q^{2}+M^{2}\right] \quad \text { Nakanishi weight }
$$

$$
\Gamma_{\pi}(q, P)=i N \gamma_{5} \int_{0}^{\infty} \mathrm{d} \omega \int_{-1}^{1} \mathrm{~d} z \frac{\rho(\omega, z) M^{2}}{\left(q-\frac{1-2}{2} P\right)^{2}+M^{2}+\omega}
$$

$$
\chi(q, P)=S(q) \Gamma_{\pi}(q, P) S(q-P)
$$

Asymptotic case: $\rho(w, z)=\delta(w)\left(1-z^{2}\right)$
Bethe-Salpeter amplitudes and quark propagators can be obtained from applying continuum functional methods (DSE,BSE) or can be modeled as previously indicated.

GPD overlap approach:

The overlap valence-quark GPD for a meson in the DGLAP kinematic region reads

$$
\begin{aligned}
& H^{q}(x, \xi, t)=30 \frac{(1-x)^{2}\left(x^{2}-\xi^{2}\right)}{\left(1-\xi^{2}\right)^{2}} \frac{1}{(1+z)^{2}}\left(\frac{3}{4}+\frac{1}{4} \frac{1-2 z}{1+z} \frac{\operatorname{arctanh} \sqrt{\frac{z}{1+z}}}{\sqrt{\frac{z}{1+z}}}\right)=30 x^{2}(1-x)^{2} \\
& z=\frac{t}{4 M^{2}} \frac{(1-x)^{2}}{1-\xi^{2}} \quad \text { Encoding the correlation of kinematical variables } \\
& S(q)=[-i \gamma \cdot q+M] /\left[q^{2}+M^{2}\right] \quad \text { Nakanishi weight } \quad \text { Forward limit: } \\
& \Gamma_{\pi}(q, P)=i N \gamma_{5} \int_{0}^{\infty} \mathrm{d} \omega \int_{-1}^{1} \mathrm{~d} z \frac{\rho(\omega, z) M^{2}}{\left(q-\frac{1-z}{2} P\right)^{2} 4 M^{2}+\omega} \\
& \chi(q, P)=S(q) \Gamma_{\pi}(q, P) S(q-P)
\end{aligned}
$$

Asymptotic case: $\rho(w, z)=\delta(w)\left(1-z^{2}\right)$
Bethe-Salpeter amplitudes and quark propagators can be obtained from applying continuum functional methods (DSE,BSE) or can be modeled as previously indicated.
N. Chouika et al., PLB780(2018)287

GPD overlap approach:

The overlap valence-quark GPD for a meson in the DGLAP kinematic region reads

$$
\begin{aligned}
& H^{q}(x, \xi, t)=30 \frac{(1-x)^{2}\left(x^{2}-\xi^{2}\right)}{\left(1-\xi^{2}\right)^{2}} \frac{1}{(1+z)^{2}}\left(\frac{3}{4}+\frac{1}{4} \frac{1-2 z}{1+z} \frac{\operatorname{arctanh} \sqrt{\frac{z}{1+z}}}{\sqrt{\frac{z}{1+z}}}\right)=30 x^{2}(1-x)^{2} \\
& z=\frac{t}{4 M^{2}} \frac{(1-x)^{2}}{1-\xi^{2}} \quad \text { Encoding the correlation of kinematical variables } \\
& S(q)=[-i \gamma \cdot q+M] /\left[q^{2}+M^{2}\right] \quad \text { Nakanishi weight } \quad \text { Forward limit: } \\
& \Gamma_{\pi}(q, P)=i N \gamma_{5} \int_{0}^{\infty} \mathrm{d} \omega \int_{-1}^{1} \mathrm{~d} z \frac{\rho(\omega, z) M^{2}}{\left(q-\frac{1-z}{2} P\right)^{2}+M^{2}+\omega} \\
& \chi(q, P)=S(q) \Gamma_{\pi}(q, P) S(q-P)
\end{aligned}
$$

Asymptotic case: $\rho(w, z)=\delta(w)\left(1-z^{2}\right)$
Bethe-Salpeter amplitudes and quark propagators can be obtained from applying continuum functional methods (DSE,BSE) or can be modeled as previously indicated. Results from the overlap and diagrammatic approaches compare very well (tested at the level of the PDF).
N. Chouika et al., PLB780(2018)287

Integral representation of LFWFs:

- The pseudoscalar LFWF can be written:

cf. Raya's talk!

$$
f_{K} \psi_{K}^{\uparrow \downarrow}\left(x, k_{\perp}^{2}\right)=\operatorname{tr}_{C D} \int_{d k_{\|}} \delta\left(n \cdot k-x n \cdot P_{K}\right) \gamma_{5} \gamma \cdot n \chi_{K}^{(2)}\left(k_{-}^{K} ; P_{K}\right) .
$$

- The moments of the distribution are given by:

$$
\begin{gathered}
<x^{m}>_{\psi_{K}^{\uparrow \downarrow}}=\int_{0}^{1} d x x^{m} \psi_{K}^{\uparrow \downarrow}\left(x, k_{\perp}^{2}\right)=\frac{1}{f_{K} n \cdot P} \int_{d k_{\|}}\left[\frac{n \cdot k}{n \cdot P}\right]^{m} \gamma_{5} \gamma \cdot n \chi_{K}^{(2)}\left(k_{-}^{K} ; P_{K}\right) \\
\int_{0}^{1} d \alpha \alpha^{m}\left[\frac{12}{f_{K}} \mathcal{Y}_{K}\left(\alpha ; \sigma^{2}\right)\right], \mathcal{Y}_{K}\left(\alpha ; \sigma^{2}\right)=\left[M_{u}(1-\alpha)+M_{s} \alpha\right] \mathcal{X}\left(\alpha ; \sigma_{\perp}^{2}\right) \\
\text { Uniqueness of Merlin moments } \longrightarrow \psi_{K}^{\uparrow \downarrow}\left(x, k_{\perp}^{2}\right)=\frac{12}{f_{K}} \mathcal{Y}_{K}\left(x ; \sigma_{\perp}^{2}\right)
\end{gathered}
$$

$$
\chi_{K}\left(\alpha ; \sigma^{3}\right)=\left[\int_{-1}^{1-2 \alpha} d \omega \int_{1+\frac{2 \alpha}{\omega-1}}^{1} d v+\int_{1-2 \alpha}^{1} d \omega \int_{\frac{v-1+2}{\omega+1}}^{1} d v\right] \frac{\rho_{K}(\omega)}{n_{K}} \frac{\Lambda_{K}^{2}}{\sigma^{3}} .
$$

The Nakanishi weight $\rho_{K}(z)$ can be modeled...
...Or taken with BSE solutions as an input!

$$
\Rightarrow \psi_{K}^{\uparrow \downarrow}\left(x, \kappa_{\perp}^{2}\right) \sim \int^{\uparrow} d \omega \cdots \rho_{K}(\omega) \cdots
$$

Integral representation of LFWFs: pion case

Nakanishi weight parametrization:
$\rho(z)=\frac{1}{2 b_{0}}\left[\operatorname{sech}^{2}\left(\frac{z-z_{0}}{2 b_{0}}\right)+\operatorname{sech}^{2}\left(\frac{z+z_{0}}{2 b_{0}}\right)\right]$
Phenomelogical model: $b_{0}^{\pi}=0.1, z_{0}^{\pi}=0.73$;

Asymptotic case: $\rho(z)=\left(1-z^{2}\right)$

Integral representation of LFWFs:

Nakanishi weight parametrization:
$\rho(z)=\frac{1}{2 b_{0}}\left[\operatorname{sech}^{2}\left(\frac{z-z_{0}}{2 b_{0}}\right)+\operatorname{sech}^{2}\left(\frac{z+z_{0}}{2 b_{0}}\right)\right]$
Phenomelogical model: $b_{0}^{\pi}=0.1, z_{0}^{\pi}=0.73$;
Realistic case: $b_{0}^{\pi}=0.275, z_{0}^{\pi}=1.23$;
Asymptotic case: $\rho(z)=\left(1-z^{2}\right)$

See Khépani's talk: PDF as a benchmark!

S-S Xu et al., PRD97(2018)094014

GPD overlap approach: pion case

The overlap valence-quark GPD for a meson in the DGLAP kinematic region reads

$$
H^{q}(x, \xi, t)=\int \frac{\mathrm{d}^{2} \mathbf{k}_{\perp}}{16 \pi^{3}} \Psi_{u \bar{f}}^{*}\left(\frac{x-\xi}{1-\xi}, \mathbf{k}_{\perp}+\frac{1-x}{1-\xi} \frac{\Delta_{\perp}}{2}\right) \Psi_{u \bar{f}}\left(\frac{x+\xi}{1+\xi}, \mathbf{k}_{\perp}-\frac{1-x}{1+\xi} \frac{\Delta_{\perp}}{2}\right)
$$

Phenomenological model

GPD overlap approach: pion case

The overlap valence-quark GPD for a meson in the DGLAP kinematic region reads

$$
H^{q}(x, \xi, t)=\int \frac{\mathrm{d}^{2} \mathbf{k}_{\perp}}{16 \pi^{3}} \Psi_{u \bar{f}}^{*}\left(\frac{x-\xi}{1-\xi}, \mathbf{k}_{\perp}+\frac{1-x}{1-\xi} \frac{\Delta_{\perp}}{2}\right) \Psi_{u \bar{f}}\left(\frac{x+\xi}{1+\xi}, \mathbf{k}_{\perp}-\frac{1-x}{1+\xi} \frac{\Delta_{\perp}}{2}\right)
$$

GPD overlap approach: pion case

The overlap valence-quark GPD for a meson in the DGLAP kinematic region reads

$$
H^{q}(x, \hat{\xi}, \hat{t})=\int \frac{\mathrm{d}^{2} \mathbf{k}_{\perp}}{16 \pi^{3}} \Psi_{u \bar{f}}^{*}\left(x, \mathbf{k}_{\perp}\right) \Psi_{u \bar{f}}\left(x, \mathbf{k}_{\perp}\right)=q^{\pi}\left(x ; \zeta_{H}\right)
$$

Focus on the forward limit: the PDF that, in the overlap representation at low Fock space, can be expressed in terms of 2-body LFWFs at a given hadronic scale

GPD overlap approach: pion case

The overlap valence-quark GPD for a meson in the DGLAP kinematic region reads

$$
H^{q}(x, \hat{\xi}, \hat{t})=\int \frac{\mathrm{d}^{2} \mathbf{k}_{\perp}}{16 \pi^{3}} \Psi_{u \bar{f}}^{*}\left(x, \mathbf{k}_{\perp}\right) \Psi_{u \bar{f}}\left(x, \mathbf{k}_{\perp}\right)=q^{\pi}\left(x ; \zeta_{H}\right)
$$

Focus on the forward limit: the PDF that, in the overlap representation at low Fock space, can be expressed in terms of 2-body LFWFs at a given hadronic scale

$$
q^{\pi}\left(x ; \zeta_{H}\right)=30 x^{2}(1-x)^{2}
$$

LFWF leading to asymptotic PDA

GPD overlap approach: pion case

The overlap valence-quark GPD for a meson in the DGLAP kinematic region reads

$$
H^{q}(x, \hat{\xi}, \hat{\ell})=\int \frac{\mathrm{d}^{2} \mathbf{k}_{\perp}}{16 \pi^{3}} \Psi_{u \bar{f}}^{*}\left(x, \mathbf{k}_{\perp}\right) \Psi_{u \bar{f}}\left(x, \mathbf{k}_{\perp}\right)=q^{\pi}\left(x ; \zeta_{H}\right)
$$

Focus on the forward limit: the PDF that, in the overlap representation at low Fock space, can be expressed in terms of 2-body LFWFs at a given hadronic scale

$$
q^{\pi}\left(x ; \zeta_{H}\right)=30 x^{2}(1-x)^{2}
$$

cf. Ding's \& Chang's talk LFWF leading to asymptotic PDA

Direct computation of Mellin moments:

$$
\left\langle x^{m}\right\rangle_{\zeta_{H}}^{\pi}=\int_{0}^{1} d x x^{m} q^{\pi}\left(x ; \zeta_{H}\right)
$$

$$
=\frac{N_{c}}{n \cdot P} \operatorname{tr} \int_{d k}\left[\frac{n \cdot k_{\eta}}{n \cdot P}\right]^{m} \mathrm{I}
$$

GPD overlap approach: pion case

The overlap valence-quark GPD for a meson in the DGLAP kinematic region reads

$$
H^{q}(x, \hat{\xi}, \hat{t})=\int \frac{\mathrm{d}^{2} \mathbf{k}_{\perp}}{16 \pi^{3}} \Psi_{u \bar{f}}^{*}\left(x, \mathbf{k}_{\perp}\right) \Psi_{u \bar{f}}\left(x, \mathbf{k}_{\perp}\right)=q^{\pi}\left(x ; \zeta_{H}\right)
$$

Focus on the forward limit: the PDF that, in the overlap representation at low Fock space, can be expressed in terms of 2-body LFWFs at a given hadronic scale

$$
q^{\pi}\left(x ; \zeta_{H}\right)=30 x^{2}(1-x)^{2}
$$

LFWF leading to asymptotic PDA

Direct computation of Mellin moments:

$$
\left\langle x^{m}\right\rangle_{\zeta_{H}}^{\pi}=\int_{0}^{1} d x x^{m} q^{\pi}\left(x ; \zeta_{H}\right)
$$

$$
=\frac{N_{c}}{n \cdot P} \operatorname{tr} \int_{d k}\left[\frac{n \cdot k_{\eta}}{n \cdot P}\right]^{m}
$$

$\Gamma_{\pi}\left(k_{\bar{\eta}}, P\right) S\left(k_{\bar{\eta}}\right) n \cdot \partial_{k_{n}}\left[\Gamma_{\pi}\left(k_{\eta},-P\right) S\left(k_{\eta}\right)\right]$
M. Ding et al., PRD01(2020)054014

GPD overlap approach: pion case

The overlap valence-quark GPD for a meson in the DGLAP kinematic region reads

$$
H^{q}(x, \hat{\xi}, \hat{t})=\int \frac{\mathrm{d}^{2} \mathbf{k}_{\perp}}{16 \pi^{3}} \Psi_{u \bar{f}}^{*}\left(x, \mathbf{k}_{\perp}\right) \Psi_{u \bar{f}}\left(x, \mathbf{k}_{\perp}\right)=q^{\pi}\left(x ; \zeta_{H}\right)
$$

Focus on the forward limit: the PDF that, in the overlap representation at low Fock space, can be expressed in terms of 2-body LFWFs at a given hadronic scale

$$
q^{\pi}\left(x ; \zeta_{H}\right)=30 x^{2}(1-x)^{2}
$$

LFWF leading to asymptotic PDA

Direct computation of Mellin moments:

$$
\left\langle x^{m}\right\rangle_{\xi_{H}}^{\pi}=\int_{0}^{1} d x x^{m} q^{\pi}\left(x ; \zeta_{H}\right)
$$

$$
=\frac{N_{c}}{n \cdot P} \operatorname{tr} \int_{d k}\left[\frac{n \cdot k_{\eta}}{n \cdot P}\right]^{m}
$$

$\Gamma_{\pi}\left(k_{\bar{\eta}}, P\right) S\left(k_{\bar{\eta}}\right) n \cdot \partial_{k_{n}}\left[\Gamma_{\pi}\left(k_{\eta},-P\right) S\left(k_{\eta}\right)\right]$
M. Ding et al., PRD01(2020)054014

Comparison with experiment: DGLAP evolution pseudo-data

Integro-differential equation for the evolution of non-singlet and singlet combinations

$$
\left\{\zeta^{2} \frac{d}{d \zeta^{2}} \int_{0}^{1} d y \delta(y-x)-\frac{\alpha\left(\zeta^{2}\right)}{4 \pi} \int_{x}^{1} \frac{d y}{y}\left(\begin{array}{cc}
P_{q q}^{\mathrm{NS}}\left(\frac{x}{y}\right) & 0 \\
0 & \mathbf{P}^{\mathrm{S}}\left(\frac{\mathbf{x}}{\mathbf{y}}\right)
\end{array}\right)\right\}\binom{H_{\pi}^{\mathrm{NS},+}(y, t ; \zeta)}{\mathbf{H}_{\pi}^{\mathrm{S}}(y, t ; \zeta)}=0
$$

$$
\mathbf{H}_{\pi}^{\mathrm{S}}(y, t ; \zeta)=\binom{H_{\pi}^{\mathrm{S},+}(y, t ; \zeta)}{\frac{1}{x} H_{\pi}^{g}(y, t ; \zeta)}
$$

DGLAP non-skewed quark GPDs

$$
\xi=0 ; x, y>0
$$

$$
\mathbf{P}^{\mathrm{S}}\left(\frac{x}{y}\right)=\left(\begin{array}{cc}
P_{q q}^{\mathrm{S}}\left(\frac{x}{y}\right) & 2 n_{f} P_{q g}^{\mathrm{S}}\left(\frac{x}{y}\right) \\
P_{g q}^{\mathrm{S}}\left(\frac{x}{y}\right) & P_{g g}^{\mathrm{S}}\left(\frac{x}{y}\right)
\end{array}\right)
$$

mixing of gluon and and singlet quark combination

Comparison with experiment: DGLAP evolution pseudo-data

Integro-differential equation for the evolution of non-singlet and singlet combinations that, in Mellin space, reads

$$
\begin{array}{r}
\left\{\begin{array}{r}
\left.\zeta^{2} \frac{d}{d \zeta^{2}} \mathbb{1}+\frac{\alpha\left(\zeta^{2}\right)}{4 \pi}\left(\begin{array}{ccc}
\gamma_{q q}^{(n)} & 0 & 0 \\
0 & \gamma_{q q}^{(n)} & 2 n_{f} \gamma_{q g}^{(n)} \\
0 & \gamma_{g q}^{(n)} & \gamma_{g q}^{(n)}
\end{array}\right)\right\}\left(\begin{array}{c}
\left\langle x^{n}\right\rangle_{\mathrm{NS}}(\zeta) \\
\left\langle x^{n}\right\rangle_{\mathrm{S}}(\zeta) \\
\left\langle x^{n}\right\rangle_{g}(\zeta)
\end{array}\right)=0 \\
\gamma_{A B}^{(n)}=-\int_{0}^{1} d x x^{n} P_{A B}^{C}(x) \\
\text { DGLAP non-skewed quark GPDs } \\
\xi=0, x, y>0
\end{array}\right.
\end{array}
$$

Mellin's moments anomalous dimensions

Comparison with experiment: DGLAP evolution pseudo-data

Integro-differential equation for the evolution of non-singlet and singlet combinations that, in Mellin space, reads

$$
\left\{\zeta^{2} \frac{d}{d \zeta^{2}} \mathbb{1}+\frac{\alpha\left(\zeta^{2}\right)}{4 \pi}\left(\begin{array}{ccc}
\gamma_{q q}^{(n)} & 0 & 0 \\
0 & \gamma_{q q}^{(n)} & 2 n_{f} \gamma_{q g}^{(n)} \\
0 & \gamma_{g q}^{(n)} & \gamma_{g g}^{(n)}
\end{array}\right)\right\}\left(\begin{array}{c}
\left\langle x^{n}\right\rangle_{\mathrm{NS}}(\zeta) \\
\left\langle x^{n}\right\rangle_{\mathrm{S}}(\zeta) \\
\left\langle x^{n}\right\rangle_{g}(\zeta)
\end{array}\right)=0
$$

Forward limit: Parton DFs

$$
\xi=0, t=0 ; x, y>0
$$

Mellin's moments anomalous dimensions

Comparison with experiment: DGLAP evolution pseudo-data

A master equation for the (1-loop) moments' evolution:
$\frac{d}{d z} q(x, z)=\frac{\alpha(z)}{4 \pi} \int_{x}^{1} \frac{d y}{y} q(y, z) P\left(\frac{x}{y}\right)+\ldots$

$$
\left\langle x^{n}(t)\right\rangle=\int_{0}^{1} d x x^{n} q(x, z)
$$

$$
\frac{d}{d z}\left\langle x^{n}(z)\right\rangle=-\frac{\alpha(z)}{4 \pi} \gamma^{(n)}\left\langle x^{n}(z)\right\rangle+\ldots
$$

$$
P(x)=\frac{8}{3}\left(\frac{1+z^{2}}{(1-x)_{+}}+\frac{3}{2} \delta(x-1)\right)
$$

$$
\frac{d}{d z} \alpha(z)=-\frac{\alpha^{2}(z)}{4 \pi} \beta_{0}+\ldots
$$

$$
\gamma^{(n)}=-\frac{4}{3}\left(3+\frac{2}{(n+2)(n+3)}-4 \sum_{i=1}^{n+1} \frac{1}{i}\right)
$$

$$
\begin{aligned}
& \alpha(z)=\frac{4 \pi}{\beta_{0}\left(z-z_{\Lambda}\right)}+\ldots \\
& z_{\Lambda}=\ln \left(\frac{\Lambda^{2}}{\zeta_{0}^{2}}\right)
\end{aligned}
$$

Λ defines the coupling renormalisation scheme (and evolution depends on it because of truncation)

$\frac{\text { Comparison with experiment: DG }}{\text { pseudo-data }}$

A master equation for the (1-loop) moments' evolution:

$$
\left\langle x^{n}(t)\right\rangle=\int_{0}^{1} d x x^{n} q(x, z)
$$

$$
\frac{d}{d z} q(x, z)=\frac{\alpha(z)}{4 \pi} \int_{x}^{1} \frac{d y}{y} q(y, z) P\left(\frac{x}{y}\right)
$$

$$
z=\ln \left(\frac{\zeta^{2}}{\zeta_{0}^{2}}\right)
$$

$$
\frac{d}{d z}\left\langle x^{n}(z)\right\rangle=-\frac{\alpha(z)}{4 \pi} \gamma^{(n)}\left\langle x^{n}(z)\right\rangle
$$

$$
P(x)=\frac{8}{3}\left(\frac{1+z^{2}}{(1-x)_{+}}+\frac{3}{2} \delta(x-1)\right)
$$

$$
\gamma^{(n)}=-\frac{4}{3}\left(3+\frac{2}{(n+2)(n+3)}-4 \sum_{i=1}^{n+1} \frac{1}{i}\right)
$$

$$
\left\langle x^{n}(z)\right\rangle=\left\langle x^{n}\left(z_{0}\right)\right\rangle \exp \left(-\frac{\gamma_{0}^{n}}{4 \pi} \int_{z_{0}}^{z} d s \alpha(s)\right)
$$

The scheme can be defined in such a way that one-loop DGLAP is exact at all orders (Grunberg's effective charge). And we are thus left with a would-be evolution from the nonperturbative hadronic scale up to the experimental one.
Λ defines the coupling renormalisation scheme (and evolution depends on it because of truncation)

Comparison with experiment: DGLAP evolution pseudo-data

Integro-differential equation for the evolution of non-singlet and singlet combinations that, in Mellin space, reads

$$
\left\{\zeta^{2} \frac{d}{d \zeta^{2}} \mathbb{1}+\frac{\alpha\left(\zeta^{2}\right)}{4 \pi}\left(\begin{array}{ccc}
\gamma_{q q}^{(n)} & 0 & 0 \\
0 & \begin{array}{|cc|}
\gamma_{q q}^{(n)} & 2 n_{f} \gamma_{q g}^{(n)} \\
0 & \gamma_{g q}^{(n)} \\
\gamma_{g g}^{(n)}
\end{array}
\end{array}\right)\right\}\binom{\left\langle x^{n}\right\rangle_{\mathrm{NS}}(\zeta)}{\begin{aligned}
& \left\langle x^{n}\right\rangle_{\mathrm{S}}(\zeta) \\
& \left\langle x^{n}\right\rangle_{g}(\zeta)
\end{aligned}}=0
$$

Forward limit: Parton DFs

$$
\gamma_{A B}^{(n)}=-\int_{0}^{1} d x x^{n} P_{A B}^{C}(x)
$$

Mellin's moments anomalous dimensions
Let us focus on the singlet sector:
$\binom{\left\langle x^{n}\left(\zeta_{f}\right)\right\rangle_{\sum_{q} q+\bar{q}}}{\left\langle x^{n}\left(\zeta_{f}\right)\right\rangle_{g}}=W\binom{\exp \left(-\frac{\lambda_{f}^{(n)}}{4 \pi} \underline{S\left(\zeta_{0}, \zeta_{f}\right)}\right)}{0}$

$$
\xi=0, t=0 ; x, y>0
$$

Basis transformation

$$
\left.\exp \left(-\frac{\lambda_{-}^{(n)}}{4 \pi} \sqrt{S\left(\zeta_{0}, \zeta_{f}\right)}\right)\right) W^{-1}\binom{\left\langle x^{n}\left(\zeta_{0}\right)\right\rangle_{\sum_{q} q+\bar{q}}}{\left\langle x^{n}\left(\zeta_{0}\right)\right\rangle_{g}}
$$

Comparison with experiment: DGLAP evolution pseudo-data

Integro-differential equation for the evolution of non-singlet and singlet combinations that, in Mellin space, reads

$$
\left\{\zeta^{2} \frac{d}{d \zeta^{2}} \mathbb{1}+\frac{\alpha\left(\zeta^{2}\right)}{4 \pi}\left(\begin{array}{ccc}
\gamma_{q q}^{(n)} & 0 & 0 \\
0 & \begin{array}{|cc}
\gamma_{q q}^{(n)} & 2 n_{f} \gamma_{q g}^{(n)} \\
0 & \gamma_{g q}^{(n)} \\
\gamma_{g q}^{(n)}
\end{array}
\end{array}\right)\right\}\binom{\left\langle x^{n}\right\rangle_{\mathrm{NS}}(\zeta)}{\left\langle\begin{array}{l}
\left\langle x^{n}\right\rangle_{\mathrm{S}}(\zeta) \\
\left\langle x^{n}\right\rangle_{g}(\zeta)
\end{array}\right.}=0
$$

Forward limit: Parton DFs

$$
\xi=0, t=0 ; x, y>0
$$

$$
\gamma_{A B}^{(n)}=-\int_{0}^{1} d x x^{n} P_{A B}^{C}(x)
$$

Mellin's moments anomalous dimensions
Let us focus on the singlet sector:
$\binom{\left\langle x^{n}\left(\zeta_{f}\right)\right\rangle_{\sum_{q} q+\bar{q}}}{\left\langle x^{n}\left(\zeta_{f}\right)\right\rangle_{g}}=W\binom{\exp \left(-\frac{\lambda_{4}^{(n)}}{4 \pi} \overline{S\left(\zeta_{0}, \zeta_{f}\right)}\right)}{0}$

$$
\binom{\left\langle x^{n}\left(\zeta_{0}\right)\right\rangle_{\sum_{q} q+\bar{q}}}{\left\langle x^{n}\left(\zeta_{0}\right)\right\rangle_{g}} \rightarrow \overbrace{\binom{\left\langle x^{n}\left(\zeta_{H}\right)\right\rangle_{u}+\left\langle x^{n}\left(\zeta_{H}\right)\right\rangle_{\bar{d}}}{0}}^{\rightarrow}\binom{1}{0}
$$

Comparison with experiment: DGLAP evolution pseudo-data

Therefore:

- All the Mellin moments for gluon, sea- and valence-quarks can be obtained at any scale from the evolution of those computed at the hadronic scale for the valence-quark (in DSE-BSE or LFWF approach). One only needs to know the first valence-quark moment a this scale. E.g.,

$$
\left\langle x^{n}\left(\zeta_{f}\right)\right\rangle_{q}=\left\langle x^{n}\left(\zeta_{H}\right)\right\rangle_{q}\left(\frac{\left\langle x\left(\zeta_{f}\right)\right\rangle_{q}}{\left\langle x\left(\zeta_{H}\right)\right\rangle_{q}}\right)^{\gamma_{q q}^{(n)} / \gamma_{q}^{(1)}}=\left\langle x^{n}\left(\zeta_{H}\right)\right\rangle_{q}\left(\left\langle 2 x\left(\zeta_{f}\right)\right\rangle_{q}\right)^{\gamma_{q q}^{(n)} / \gamma_{q q}^{(1)}}
$$

(0) In the case of the momentum fraction averages, the expressions are very simple:

$$
\begin{aligned}
\left\langle x\left(\zeta_{f}\right)\right\rangle_{\text {sea }} & =\left\langle x\left(\zeta_{f}\right)\right\rangle_{\sum_{q} q+\bar{q}}-\left(\left\langle x\left(\zeta_{f}\right)\right\rangle_{u}+\left\langle x\left(\zeta_{f}\right)\right\rangle_{\bar{d}}\right), \\
& =\frac{3}{7}+\frac{4}{7}\left\langle 2 x\left(\zeta_{f}\right)\right\rangle_{u}^{7 / 4}-\left\langle 2 x\left(\zeta_{f}\right)\right\rangle_{u} \\
\left\langle x\left(\zeta_{f}\right)\right\rangle_{g} & =\frac{4}{7}\left(1-\left\langle 2 x\left(\zeta_{f}\right)\right\rangle_{u}^{7 / 4}\right)
\end{aligned}
$$

Sum rule: $\left\langle 2 x\left(\zeta_{f}\right)\right\rangle_{q}+\left\langle x\left(\zeta_{f}\right)\right\rangle_{\text {sea }}+\left\langle x\left(\zeta_{f}\right)\right\rangle_{g}=1$

$\frac{\text { Comparison with experiment: DG }}{\text { pseudo-data }}$

$$
\begin{aligned}
\left\langle x\left(\zeta_{f}\right)\right\rangle_{\text {sea }} & =\left\langle x\left(\zeta_{f}\right)\right\rangle_{\sum_{q} q+\bar{q}}-\left(\left\langle x\left(\zeta_{f}\right)\right\rangle_{u}+\left\langle x\left(\zeta_{f}\right)\right\rangle_{\bar{d}}\right) \\
& =\frac{3}{7}+\frac{4}{7}\left\langle 2 x\left(\zeta_{f}\right)\right\rangle_{u}^{7 / 4}-\left\langle 2 x\left(\zeta_{f}\right)\right\rangle_{u} \\
\left\langle x\left(\zeta_{f}\right)\right\rangle_{g} & =\frac{4}{7}\left(1-\left\langle 2 x\left(\zeta_{f}\right)\right\rangle_{u}^{7 / 4}\right)
\end{aligned}
$$

Data from Novikov et al., arXiv:2002.02902:

	$\langle x v\rangle$	$\langle x S\rangle$	$\langle x g\rangle$	Q^{2} $\left(\mathrm{GeV}^{2}\right)$
JAM [26]	0.54 ± 0.01	0.16 ± 0.02	0.30 ± 0.02	1.69
JAM (DY)	0.60 ± 0.01	0.30 ± 0.05	0.10 ± 0.05	1.69
this work	0.55 ± 0.06	0.26 ± 0.15	0.19 ± 0.16	1.69
Lattice-3 [16]	0.428 ± 0.030		4	
SMRS [20]	0.40 ± 0.02		4	
Han et al. [42]	0.428 ± 0.03		4	
DSE [7]	0.52		4	
this work	0.50 ± 0.05	0.25 ± 0.13	0.25 ± 0.13	4
JAM	0.48 ± 0.01	0.17 ± 0.01	0.35 ± 0.02	5
this work	0.49 ± 0.05	0.25 ± 0.12	0.26 ± 0.13	5
Lattice-1 [14]	0.558 ± 0.166			5.76
Lattice-2 [15]	0.48 ± 0.04		5.76	
this work	0.48 ± 0.05	0.25 ± 0.12	0.27 ± 0.13	5.76
WRH [21]	0.434 ± 0.022		27	
ChQM-1 [11]	0.428		27	
ChQM-2 [13]	0.46		27	
this work	0.42 ± 0.04	0.25 ± 0.10	0.32 ± 0.10	27
SMRS [20]	0.49 ± 0.02		49	
this work	0.41 ± 0.04	0.25 ± 0.09	0.34 ± 0.09	49

Comparison with experiment: PI effective charge

D.B et al., PRD96(2017)054026 J.R-Q et al., FBS59(2018)121 Z-F Cui et al., arXiv:1912.08232

Process-independent charge, defined as an analogue of the QED Gell-Man-low, on the basis of the PT-BFM truncation of DSEs in the gluon sector

Gauge-independent, no Landau pole, fully determined by the gluon sector, known to unify a wide range of observables, it compares very well with the Bjorken sum rule charge...

pseudo-data

Comparison with experiment: PI effective charge
 D.B et al., PRD96(2017)054026
 pseudo-data

J.R-Q et al., FBS59(2018)121 Z-F Cui et al., arXiv:1912.08232

Process-independent charge, defined as an analogue of the QED Gell-Man-low, on the basis of the PT-BFM truncation of DSEs in the gluon sector

Gauge-independent, no Landau pole, fully determined by the gluon sector, known to unify a wide range of observables, it compares very well with the Bjorken sum rule charge...

Assumption: The PI charge and the one for the all-order DF evolution correspond with each other within the IR, while at large momenta the latter is defined by the phenomenological value of $\Lambda_{Q C D}=234 \mathrm{MeV}$.

$$
\zeta_{H}=m_{G}=0.331(2) \mathrm{GeV}
$$

Comparison with experiment:

pseudo-data

Then, one can evolve the pion PDF, by using the effective charge, from the hadronic scale up to the relevant one for the E615 experiment:
[Aicher et al., PRL105(2010)252003]

After identifying $m_{0} \equiv \zeta_{H}$, all the scales (and the evolution between them) appear thus fixed. And the agreement with E615 data is perfect!!!

Comparison with experiment:

pseudo-data

Then, one can evolve the pion PDF, by using the effective charge, from the hadronic scale up to the relevant one for the E615 experiment:
[Aicher et al., PRL105(2010)252003]

Evolved GPDs: pion case

The overlap valence-quark GPD for a meson in the DGLAP kinematic region reads

$$
H^{q}(x, \xi, t)=\int \frac{\mathrm{d}^{2} \mathbf{k}_{\perp}}{16 \pi^{3}} \Psi_{u \bar{f}}^{*}\left(\frac{x-\xi}{1-\xi}, \mathbf{k}_{\perp}+\frac{1-x}{1-\xi} \frac{\Delta_{\perp}}{2}\right) \Psi_{u \bar{f}}\left(\frac{x+\xi}{1+\xi}, \mathbf{k}_{\perp}-\frac{1-x}{1+\xi} \frac{\Delta_{\perp}}{2}\right)
$$

$$
\zeta_{0}=\zeta_{H}=0.33 \mathrm{GeV} \rightarrow \zeta_{5}=5.2 \mathrm{GeV}
$$

$\mathrm{t} /\left[\mathrm{GeV}^{2}\right]$

Pion realistic picture: Electromagnetic Form Factor

$F_{M}\left(\Delta^{2}\right)=\underset{\substack{\text { Electric charges }}}{e_{u} F_{M}^{u}\left(\Delta^{2}\right)+e_{f} F_{M}^{f}\left(\Delta^{2}\right), F_{M}^{q}\left(-t=\Delta^{2}\right)=\int_{-1}^{1} d x H_{M}^{q}(x, \xi, t) ~}$

Blue: Computed from GPD
Green: Computed from HS formula Red: ‘Evolved’ form factor

Kaon preliminary results:

Identifying first the LFWF (cf. Khépani's talk)

A word about gravitational form factors:

First, polynomiality:

$$
\int_{-1}^{1} d x x^{m} H(x, \xi, t)=\sum_{k=0}^{m+1} C_{k}^{(m)}(t) \xi^{k} \quad \begin{aligned}
& \text { (Time reversal symmetry } \\
& \text { implies k even) }
\end{aligned}
$$

If one defines a function D such that:

$$
\int_{-1}^{1} d x x^{m} D(x, t)=C_{m+1}^{m}(t)
$$

where $D(x, t)=0 \quad \forall x \in[-\infty,-1) U(1, \infty]$

$$
\left.\int_{-1}^{1} d x x^{m} H(x, \xi, t)-\operatorname{sign}(\xi) D\left(\frac{x}{\xi}\right)=\sum_{k=0}^{m} C_{k}^{(m)}(t)\right) \xi^{k}
$$

$$
\int_{\Omega} d \beta d \alpha h_{P W}(\beta, \alpha ; t) \delta(x-\beta-\alpha \xi)=\mathcal{R}\left[h_{\mathrm{PW}}\right]
$$

$$
\left.\frac{1}{|\xi|} D\left(\frac{x}{\xi}, t\right)=\int_{\Omega} d \beta d \alpha \delta(\beta) D(\alpha, t) \delta(x-\beta-\alpha \xi)=\mathcal{R}[\delta D)\right] \quad \begin{aligned}
& \text { PW D-term } \\
& \text { (Pure ERBL contribution) }
\end{aligned}
$$

Specializing for the case $\mathrm{m}=1$

$$
\int_{-1}^{1} d x x H(x, \xi, t)=c_{0}^{(1)}(t)+\xi^{2} \int_{-1}^{1} d z z D(z, t)
$$

A word about gravitational form factors:

Latt.ice data: D. Brommel, Ph.D. thesis, U. Regensburg, Germany (2007), DESY-THESIS-2007-023

A word about gravitational form factors:

Latt.ice data: D. Brommel, Ph.D. thesis, U. Regensburg, Germany (2007), DESY-THESIS-2007-023

A word about gravitational form factors:

$$
\begin{aligned}
& \int_{-1}^{1} d x x H(x, \xi, t)=c_{0}^{(1)}(t)+\xi^{2} \int_{-1}^{1} d z z D(z, t) \\
& \text { 3/2-Gegenbauer expansion } \\
& \theta_{2}(t)=\int_{-1}^{1} d x x\left(H_{\pi^{+}}^{u}(x, 0, t)+H_{\pi^{+}}^{d}(-x, 0, t)\right) \\
& D(z, t)=\left(1-z^{2}\right) \sum_{k=1, \text { odd }}^{\infty} d_{k}(t) C_{k}^{(3 / 2)}(x)
\end{aligned}
$$

LFWF + overlap approach cannot give access to the second gravitational moment. The Radon transform inversion of the DGLAP GPD cannot either (as it is nothing but a Dterm contribution).

A possible way-out is considering unsubtracted t-channel dispersion relations to provide with a representation of the D-term form factor
[See Pasquini et al., PLB739(2014)133, precisely determining $d_{1}(t)$ for a nucleon case]
On the other hand, the soft-pion theorem opens a window to fully constraint the D-term and thus this second gravitational factor can be estimated at $\mathrm{t}=0$. E.g., in the algebraic asymptotic model, one is left at the hadronic scale with:

$$
\int_{-1}^{1} d z z D(z, 0)=-1
$$

Conclusions

Owing to a sensible parametrisation of the BSA grounded on the so-called Nakanishi representation, one is left with a flexible algebraic model for the LFWF in terms of a spectral density.

Conclusions

Owing to a sensible parametrisation of the BSA grounded on the so-called Nakanishi representation, one is left with a flexible algebraic model for the LFWF in terms of a spectral density.

A direct calculation of the PDF from realistic quark gap and Bethe-Salpeter equations' solutions (in the forward kinematical limit) delivers a benchmark result to identify the spectral density which corresponds to the realistic LFWF.

Conclusions

Owing to a sensible parametrisation of the BSA grounded on the so-called Nakanishi representation, one is left with a flexible algebraic model for the LFWF in terms of a spectral density.

A direct calculation of the PDF from realistic quark gap and Bethe-Salpeter equations' solutions (in the forward kinematical limit) delivers a benchmark result to identify the spectral density which corresponds to the realistic LFWF.

The overlap representation provides with a simple way to calculate beyond the forward kinematic limit, and thus obtain the GPD, although only in the DGLAP region.

Conclusions

Owing to a sensible parametrisation of the BSA grounded on the so-called Nakanishi representation, one is left with a flexible algebraic model for the LFWF in terms of a spectral density.

A direct calculation of the PDF from realistic quark gap and Bethe-Salpeter equations' solutions (in the forward kinematical limit) delivers a benchmark result to identify the spectral density which corresponds to the realistic LFWF.

The overlap representation provides with a simple way to calculate beyond the forward kinematic limit, and thus obtain the GPD, although only in the DGLAP region.

A recently proposed Pl effective charge can be used to make the DGLAP GPD evolve from the hadronic scale (where quasi-particle DSE's solutions are the correct degrees-of-freedom) up to any other relevant scale.

Conclusions

Owing to a sensible parametrisation of the BSA grounded on the so-called Nakanishi representation, one is left with a flexible algebraic model for the LFWF in terms of a spectral density.

A direct calculation of the PDF Bethe-Salpeter kinematical limit) spectral density

Thank you!!

The overlap representation provides with a simple way to calculate beyond the forward kinematic limit, and thus obtain the GPD, although only in the DGLAP region.

A recently proposed Pl effective charge can be used to make the DGLAP GPD evolve from the hadronic scale (where quasi-particle DSE's solutions are the correct degrees-of-freedom) up to any other relevant scale.

