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General picture

_ The QCD Holy Grail: the understanding of
High  hadrons in terms of its elementary excitations;
namely, quarks and gluons!
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Emergent phenomena playing a dominant role in the real world
3q-coreMB-cloud ) inated by the IR dynamics of QCD.



Antecedents:

GPD definition:
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with t = A? and £ = —AT/(2P1).

Muller et al., Fortchr. Phys. 42, 101 (1994)
Radyushkin, Phys. Lett. B380, 417 (1996)
Ji, Phys. Rev. Lett. 78, 610 (1997)

m From isospin symmetry, all the information about pion
GPD is encoded in HY, and HiJr.
m Further constraint from charge conjugation:

HY, (x, &, ) = —H, (—x, &, t).



Antecedents:

GPDs in the Schwinger-Dyson and
Bethe-Salpeter approach
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Antecedents:

GPDs in the Schwinger-Dyson and
Bethe-Salpeter approach
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m Compute Mellin moments
of the pion GPD H.

m [riangle diagram approx.




Antecedents:

GPDs in the Schwinger-Dyson and
Bethe-Salpeter approach
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m Compute Mellin moments
of the pion GPD H.

m Iriangle diagram approx.
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Antecedents:

GPDs in the Schwinger-Dyson and
Bethe-Salpeter approach
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m [riangle diagram approx.
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Antecedents:

GPD asymptotic algebraic model:

m Expressions for vertices and propagators:

S(p) = [—iv p+MAuKP
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Celk,p) = :‘ﬁ.*,gEM‘:”/l dzp,(z) [.-’_\M(kizﬂ
f)u(z) = Rﬂ(l_zz)y

with R, a normalization factor and ki, = k — p(1 — z)/2.
Chang et al., Phys. Rev. Lett. 110 137001 /nn==?
m Only two parameters:

m Dimensionf’
m Dimens

= ...and closed-form expressions can be...

Antecedents:

GPD asymptotic algebraic model (completion):
The full model: e
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C. Mezrag et al., PLB741(2015)190; ArXiy:1406.7425[hep-ph]

Antecedents:

Can be done! i

GPD asymptotic algebraic model:
m Analytic expression in the DGLAP region.
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found in simple cases. s

e wwulGHLD,

GPD asymptotic algebraic model (completion):

q(x) = H9(x,0,0)

PDF forward limit




Antecedents:

GPD asymptotic algebraic mod~"

Antecedents:

~*ntic algebraic model:
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Impulse approx. Symmetry rescuing terms

L.Chang et al., Phys.Lett. B737 (2014) 23-20

cf. Ding’s & Mezrag'’s talks!

Symmetry-preserving contributions play a crucial role

q(z) = H¥(x,0,0)

C. Mezrag et al., Phys.Lett. B 741(2015)190
M. Ding et al., Chin.Phys. C (Lett)44(2020) 031002
M. Ding et al., Phys. Rev. D 101 (2020) 054014
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GPD overlap approach:

The overlap quark GPD for a meson in the DGLAP kinematic region reads
H .60 = 3 V1= Ve > b [ 1zl [@%K1) 82 - 20
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GPD overlap approach:

The overlap quark GPD for a meson in the DGLAP kinematic region reads
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in terms of the meson LFWF
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which are the components in an expansion of the meson on a Fock basis, after
light-front quantization.



GPD overlap approach:

The overlap valence-quark GPD for a meson in the DGLAP kinematic region reads

HY (2, €,t) = /rl kll[;*_(‘r gukl +1 .r,ﬁ_)lpuf(.r—l—f K, 1 .r_\+)
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GPD overlap approach:

The overlap valence-quark GPD for a meson in the DGLAP kinematic region reads
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GPD overlap approach:

The overlap valence-quark GPD for a meson in the DGLAP kinematic region reads
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xlq, Pl|= S(q)l=(g. P)S(q — P)

Bethe-Salpeter amplitudes and quark
propagators can be obtained from applying
continuum functional methods (DSE,BSE)



GPD overlap approach:

The overlap valence-quark GPD for a meson in the DGLAP kinematic region reads
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Asymptotic case:@ = (w)(1 — 2%)

Bethe-Salpeter amplitudes and quark
propagators can be obtained from applying
continuum functional methods (DSE,BSE)
or can be modeled as previously indicated.




GPD overlap approach:

The overlap valence-quark GPD for a meson in the DGLAP kinematic region reads
it
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Asymptotic case:@ = (w)(1 — 2%)

Bethe-Salpeter amplitudes and quark
propagators can be obtained from applying
continuum functional methods (DSE,BSE)
or can be modeled as previously indicated.

N. Chouika et al., PLB780(2018)287



GPD overlap approach:

The overlap valence-quark GPD for a meson in the DGLAP kinematic region reads
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N. Chouika et al., PLB780(2018)287



GPD overlap approach:

The overlap valence-quark GPD for a meson in the DGLAP kinematic region reads
it
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Asymptotic case:@ = (w)(1 — 2%)

Bethe-Salpeter amplitudes and quark
propagators can be obtained from applying
continuum functional methods (DSE,BSE)
or can be modeled as previously indicated.

1% symmetry under: © <+ 1 — x is akey featurel!

Results from the overlap and diagrammatic [
approaches compare very well (tested at the level 05-
of the PDF). [

N. Chouika et al., PLB780(2018)287



Integral representation of LFWFs:

cf. Raya’s talk!

» The pseudoscalar LFWF can be written:
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= The moments of the distribution are given by:
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an input!




Integral representation of LFWFs: pion case

Nakanishi weight parametrization: 75

1 z— 2 z+ zg :
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PE) = g, lsec ( 2by ) wee ( 2bq )] ;
Phenomelogical model: bj=0.1,25=0.73; — ; e
Asymptotic case: p(z) = (1 — z?)

S-S Xu et al.,, PRD97(2018)094014



Integral representation of LFWFs:

Nakanishi weight parametrization: v Iy

{
!
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g 2bq 200 200 |

Phenomelogical model: b*=0.1,z7=0.73; —— ~/ |\
icti R A T__ . P S
Realistic case: b;=0.275, z;=1.23;

Asymptotic case: p(z) = (1 — z?)

S-S Xu et al.,, PRD97(2018)094014




GPD overlap approach: pion case

The overlap valence-quark GPD for a meson in the DGLAP kinematic region reads

d?k,|. . [z—¢& 1—xA, r+& 1—-zA,
B 0= [ ae (Togk + Yo (e - 156 %)
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Phenomenological model




GPD overlap approach: pion case

The overlap valence-quark GPD for a meson in the DGLAP kinematic region reads
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GPD overlap approach: pion case

The overlap valence-quark GPD for a meson in the DGLAP kinematic region reads

a2k
HY (2 ;;‘ﬁ /m;a (z.k) U7 (2,k)) = ¢"(x;Cn)

Focus on the forward limit: the PDF that, in the overlap representation at low Fock space,
can be expressed in terms of 2-body LFWFs at a given hadronic scale

4 —t[GeV]

Phenomenological model

Realistic case
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GPD overlap approach: pion case

The overlap valence-quark GPD for a meson in the DGLAP kinematic region reads

d?k
o o, 48 = [ oo k) ¥z (k) = ¢ (@i Cu)
Focus on the forward limit: the PDF that, in the overlap representation at low Fock space,
can be expressed in terms of 2-body LFWFs at a given hadronic scale
¢ (x: Cy) = 302%(1 — x)?
LFWEF leading to asymptotic PDA

— q(x,44) DB 7 AN
| = g(x,{y) GPD @ b
1.5} == g(x,n) Asy !;' \




GPD overlap approach: pion case

The overlap valence-quark GPD for a meson in the DGLAP kinematic region reads

12k

fJ i L\ . R

H g/ﬁ / 16 T..:] llju? {'1"'kJ_} = {4 ('E-.' CH)

Focus on the forward limit: the PDF that, in the overlap representation at low Fock space,

can be expressed in terms of 2-body LFWFs at a given hadronic scale
7" (z; () = 30z%(1 — z)*

cf. Ding’s & Chang’s talk LFWF leading to asymptotic PDA
s
= il
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Direct computation of
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(@) = f dram g (z:Cy) 00 0.2
‘213 32 22( m}z
N, fdk H:| L'y (ks P) S(kﬁ}n.akn T (ky, —P)S (k)] /

= tr
. . x [1—2.9342¢/2(1 — z)+2.29112(1 —
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GPD overlap approach: pion case

The overlap valence-quark GPD for a meson in the DGLAP kinematic region reads

d?k
HY (2 gﬁ /16;3 (. k) ¥V 7 (2. k1) = ¢"(z;Cn)

Focus on the forward limit: the PDF that, in the overlap representation at low Fock space,
can be expressed in terms of 2-body LFWFs at a given hadronic scale
¢ (x: Cy) = 302%(1 — x)?
LFWEF leading to asymptotic PDA

s
S R
= q(x, ) DB 7 Y
| = g(x,{y) GPD @ b
15} == qx.anAsy 7 L

i DCSB induced hardenlng \
- ‘ >

Direct computation of
Mellin moments:
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N ’ L m x213.32:r2(1—m)2
— £ " . —
n-P"/, ﬁ} D (g, P) S(kg) - O, Dby, =P)S(ky) ¥ X [1—2.9342¢/2(1 — z) + 2.2911 z(1 — z)]

M. Ding et al., PRD01(2020)054014
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GPD overlap approach: pion case

The overlap valence-quark GPD for a meson in the DGLAP kinematic region reads

0
d?k
H* {I,gﬁ= /16;3'-1‘:? (z.k1) ¥, 7(z. k) = ¢"(z;Cu)

Focus on the forward limit: the PDF that, in the overlap representation at low Fock space,
can be expressed in terms of 2-body LFWFs at a given hadronic scale

q" (z: Cr) = 302%(1 — x)?
LFWEF leading to asymptotic PDA

7
- / )
- -~
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== (X, {n) Rea 4

Direct computation of

Mellin moments: 0.0l 4 _ _ _ _ 4
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M. Ding et al., PRD01(2020)054014
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Comparison with W: DGLAP evolution

pseudo-data

Integro-differential equation for the evolution of non-singlet and singlet combinations

v
Tt

i 1 2 1 i Pg:l?q (f) 0 NS, 4
2‘-’_/ Ailr—] = a(C )/ Y Y He'(y,650) ) _
dJo 7 in J HS(y, ;)

e Y 0 PS(E)
. }r 4

DGLAP non-skewed quark GPDs

S 4
Hf'f' y. t: = T (-y,t;(:} -0 -

T 1 I
Po (2] on.P° (—)
pS ({) _ #* Ly P9 \
xr

Y s (£ s (*
qu Y P.G‘!J (E)

\_ . /
~

mixing of gluon and and singlet quark combination




Comparison with W: DGLAP evolution

pseudo-data

Integro-differential equation for the evolution of non-singlet and singlet combinations
that, in Mellin space, reads

f [ :I : T
d o(C2) Yag 0 0 (z™)ns(C)
2 ' m) 4. _(n) A — 0
A Eiezl o} 0 Yag 214%Ygq > (x")s(¢) (
dg dm (n) [n}l "
h 0 % e J (" )g(C)
4 DGLAP non-skewed quark GPDs
,}_E{g = — [ﬂ dz z"P{s(z) £=0,x,y>0

Mellin’s moments anomalous dimensions

11



Comparison with W: DGLAP evolution
pseudo-data

Integro-differential equation for the evolution of non-singlet and singlet combinations

that, in Mellin space, reads
Let us focus on the valence-quark sector

0 00 ) (@@
2 ’ 1 p T 1 -
¢ d—gi’l + {1“ ’}qq} 2n 7 .-Eq] ¢ (x™)s(C) =0
G‘ ) (m) (") g(C)
u "}qq Yag y g
1 Forward limit: Parton DFs
E{g = _ [n dx :.-:”PEB(:J:*) £=0,t=0;x,y>0

Mellin’s moments anomalous dimensions

11
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Comparison with experiment: DGLAP evolution

pseudo-data

A master equation for the (1-loop) moments' evolution:

<x"(t)>:f dxx"q(x,z)

§2
=]n(=
2=In(Z)

Lqlx.7)= fdyy aly.z)P()+...
%<xn(z)>:_O;(_Tzc)y<n)<xn<z)>+... b % (11”) +%6(x—1)
2= -1ty V=4 e
4
ai);?(’(g“v al2) ™
= (00 (2) = ({2 | 45

A defines the coupling renormalisation scheme (and evolution depends on it because of truncation)
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Comparison with experiment: DGLAP evolution

pseudo-data

A master equation for the (1-loop) moments' evolution:

<x"(t)>:f dxx"q(x,z)

CZ
d dy X z:1n(g)
2 qx,2)= S [ L(y2)p(%)
1
? _ n _
Moments'+ evolution (1-loop): > {dxx P<X> Y

-l e z), 8

47[: P(X): 3
1 y<">:_§
Y (s)

(x"(z)) = (x"(z,)) exp| =

d
9 (0(2)) =

The scheme can be defined in such a way that one-loop DGLAP is exact at all orders (Grunberg's
effective charge). And we are thus left with a would-be evolution from the nonperturbative
hadronic scale up to the experimental one.

A defines the coupling renormalisation scheme (and evolution depends on it because of truncation)



Comparison with W: DGLAP evolution
pseudo-data

Integro-differential equation for the evolution of non-singlet and singlet combinations
that, in Mellin space, reads

( ™ 0 “ nY i
9 d ﬂf((:g) e (n) (n) = }ENE(O
Saat T T | O e 2 [ 0| (SR ) T
\ 0 |V9q Y99 y ="(C)
i Forward limit: Parton DFs
’}'E,lné = — / dz z"P{s(z) §=0,t=0;x,y>0
J0 .
Mellin’s moments anomalous dimensions f ds(s)
: _ ! Basis transformation
Let us focus on the singlet sector: / o

A(m)

o y exp  — 1960 ¢r)
() -@ "D

0

)( @m0

13
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Comparison with W: DGLAP evolution

pseudo-data

Integro-differential equation for the evolution of non-singlet and singlet combinations

that, in Mellin space, reads

, ()

. v 0 0
. d H(CE) i (n) (n)
16 721+ 0 |Ygq 2157 :
dq am m )
! 0 |7gg Vag )
1 PPN
Yap = i dy s"FPiglx)

Mellin’s moments anomalous dimensions

Let us focus on the singlet sector:

0

Forward limit: Parton DFs

jdsa(s)

g

: S(Cmtﬁr))

( @G5, ara
(In(qf”g

) P r
0

At the hadronic scale, &4, all the
momentum is carried out by valence
guarks!

(2" (Co))x, a+q
{2"(C0))g

(

£=0,t=0;x,y>0

1 [ & (C0))x, a+a
W ( (&),

)

\

J

(™ (Cr))u + (2" (Ch)) g )
0



Comparison with W: DGLAP evolution

pseudo-data

Therefore:

@ All the Mellin moments for gluon, sea- and valence-quarks can be obtained at
any scale from the evolution of those computed at the hadronic scale for the
valence-quark (in DSE-BSE or LFWF approach). One only needs to know the
first valence-quark moment a this scale. E.g.,

NOPNG
n _ pm {-T(C.f]}q) S ool Y TR A
(«"(C))a = (2"(CH))q (@(qﬂ)}q = (2"(Cn))q ((22(¢f))g)

@ In the case of the momentum fraction averages, the expressions are very
simple:

Z(Cf))sea = Gy, grq — ((@(Cp))u + (2(Cs))a)

(@(Cf))g

®  sumue |(2(p))g + (@())sen + (£(p))g = 1




Comparison with W: DGLAP evolution

pseudo-data

(w0) @) @
TAM [20] 054£001 0.16£0.02 0.30 £0.02 1.69
1 . : b JAM (DY)  0.60+0.01 0.3040.05 0.104+0.05 1.69
{J(Cfnaea. — {-3 [:(: )}Z q+q ({T('l:f}}u -+ (‘E(Cf)}d) 5 this work 0.55+0.06 0.26+0.15 0.19£0.16 1.69
q Lattice-3 [16] 0.428 £ 0.030 1
3 4 SMRS [20] 0.40 =+ 0.02 4
e |EB 9 /4 9. : Han et al. [12] 0.428 +0.03 4
= | = + ={22(Cr))x (22(Cf))u DSE [7] 0.52 4
T 7 this work 0.50+0.05 0254013 0254013 4
1 TAM 048 =001 0.17£001 035002 5
'.'-"ff-i this work 0.49+005 0254012 026+0.13 5
{Jﬁ ( Cf ) ) g = = ( ) Lattice-1 [14] 0.558 £ 0.166 5.76
' ' 7 Lattice-2 [I5]  0.48 £ 0.04 5.76
this work 0.48+0.05 0.25+0.12 0.27+£0.13 5.76
WRH 0.431 £ 0.022 27
ChQM-1 [11] 0.428 27
. : ChQM-2 0.46 27
Data from Novikov et al., arXiv:2002.02902: this worklE 0.42+0.04 0.25+0.10 0.324+0.10 27
SMRS [20] 0.49 £ 0.02 19
this work 0.41+0.04 0254009 0.34+£0.00 49
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Comparison with experintent: P| effective charge

D.B et al., PRD96(2017)054026 pseudo-data
J.R-Q et al., FBS59(2018)121 - I

Z-F Cui et al., arXiv:1912.08232 a 1+ . Exp.a -
Process-independent charge, P 17 :ﬂ, s o 35%,?019 i
defined as an analogue of the i 1 "7.'\"*" : - — Phen. resc.
QED Gell-Man-low, on the - 1r iy
basis of the PT-BFM truncation & 1 :
of DSEs in the gluon sector =

<3 05 -+

Gauge-independent, no
Landau pole, fully determined
by the gluon sector, known to
unify a wide range of
observables, it compares very
well with the Bjorken sum rule | ——

: | T
charge... k [GeV]
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Comparison with experintent: P| effective charge

D.B et al., PRD96(2017)054026 pseudo-data

\JR'Q et al, FBS59(2018)121 T T T T T T LI N T
Z-F Cui et al., arXiv:1912.08232 i 1{r . Exp.a

Process-independent charge, [ | ~ :L — Sgglfmg s

defined as an analogue of the i m oS == - — Phen. resc.
QED Gell-Man-low, on the - 1r iy

basis of the PT-BFM truncation & 1 '
of DSEs in the gluon sector —

=,
S

=

Gauge-independent, no T il

Landau pole, fully determined
by the gluon sector, known to
unify a wide range of

observables, it compares very
well with the Bjorken sum rule | ——

N Phenomenological running kK [GeV]

Assumption: The PI charge and the one for the all-order DF evolution correspond with
each other within the IR, while at large momenta the latter is defined by the

phenomenological value of A ,,,=234 MeV.

£, =m.=0.331(2) GeV‘
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Comparison with expernTent: (2] = (x(z.)yexs

pseudo-data

471

Then, one can evolve the pion PDF, by using the effective charge, from the hadronic scale up
to the relevant one for the E615 experiment: [Aicher et al., PRL105(2010)252003]

Cy=m.=C,=5.2GeV
1.0

— X G (X; ¢n)
= X G (X; C5)

00 02 04 06 08 1.0
X
After identifying m,=C,,, all the scales (and the evolution between them)

appear thus fixed. And the agreement with E615_data is perfect!!!

pseudo-data

(1) =z
Y fdsoc(s)
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Comparison with expernTent: (2] = (x(z.)yexs
pseudo-data

y(l)

Then, one can evolve the pion PDF, by using the effective charge, from the hadronic scale up
to the relevant one for the E615 experiment: [Aicher et al., PRL105(2010)252003]
Cy=m.=C,=5.2GeV

0.5} % ma X S (X; )
E - X gn(X; {5)
0.4} 4 - X gn(x; {5)
,i. — Lattice CS
— %
N2 0.3 i
5
o
s¢ 02

0.1
0.0} 5 eaeee
0.0 0.2 0.4 0.6 0.8 1.0
X
¢ | <a>v L0 <rda
Lattice: [Sufian et al., arXiv:2001.04960] 2 GeV | 0.483(42)

0.411(24) 0.106(18)

5 GeV | 0.412(36) 0.449(19) 0.138(17)

s)

—H j;dSOL(
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Evolved GPDs: pion case

The overlap valence-quark GPD for a meson in the DGLAP kinematic region reads

T — 1 —xA, r+& 1—-zA

HY (2,€,t) = o i, Bu) g [ BTG g A=EhL
{Ilfﬂ } ‘/lﬁn.alpu_f(l_gakj_-i- 1_£ 2 )'Ijuf(l_{_{.akl 1+£ 2 )
-t/[GeV?]

C,=C;=0.33 GeV 2(.=5.2GeV
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Pion realistic picture: Electromagnetic Form Factor

1
FM(Az) = BuF;ﬂr(AQ) + BfF;{f(Az) , ijf(_f = 32} = / dx Hﬁf(-'l"af,f]
'\ -1

Electric charges

L e ™ 0.68 fm
038\~
e | S T
H = =N :ns 0.2}
e 0.8 ———————————————

Blue: Computed from GPD
Green: Computed from HS formula

Red: ‘Evolved’ form factor
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Kaon preliminary results:

ldentifying first the LFWF (cf. Khépani’s talk)
X 0.0

/~’~'
- 1
LEAN N - I
- !
1
1

one obtains the DGLAP GPD:

_— GPD
— DSE

/nd the electromagnetic form factor.
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A word about gravitational form factors:

First, polynomiality:

1
m I _ +(m) k  (Time reversal symmetry
/_1 dea™ Hz,§,1) Z G0 & implies k even)

If one defines a function D such that:

1
/ dr " D(x,t) = C)" i (t)
J-1
where D(z,t) =0 V€ [—o0,—1)U(1, 0]

1 m
/ dr z™(| H(x, &, t) — sign(§)D (; E (“Em](t
J-1

/ dBda hpw (5, a;t)0(x — 5 —af) = R |hpw]
Ja

1 ; | o ] | .
—D (E,t) — / dBda 8(8)D(a,t)5(x — B — af) = R[6D)] PW D-term
€\ ¢ Ja (Pure ERBL contribution)

Specializing for the case m=1

1 . 1
/ de v H(x, & t) = cél’](t) + £ / zZz
<=1 J—1



A word about gravitational form factors:

1 . 1
/ de v H(x, & t) = cél’](t) + £ z z D(z,1)

|sospin-symmetric limit

1
1 592(5)
Ba(t) = / dr x (H,?Jr (z,0,1) + H:Jr (—x, 0, f])
J-1
1.0 . . . .
— B (i} (0) - Laltice 0.5¢ = Ba(F &) - Lattice
— 61 {y)- GPD -  &(:)-GPD
08 | 04
0.6} 0al
041 0.2}
0.2} _
m, ~ .45 GeV 0
005 1 2 3 4 5 005 1 2 3 4 5
-U[GeV] -[GeV]
Lattice: (2007) Brémmel's dissertation. 0:(0)/2 =< = >= 0.261(5)
GPD + Ding et al. B:(0)/2 =< x >= 0.242(20)

Latt.ice data: D. Brommel, Ph.D. thesis, U. Regensburg, Germany (2007), DESY-THESIS-2007-023



A word about gravitational form factors:

i

dv v H(z,&, 1)

:CD

R

1 00

LO_% - @Y (t ) — ()
- O3 (t; ()
0.8 - B5(t G)
5 0.6/
o 0.4-4;-‘.':"--_
0.2!
0ol n
0 1 2 3 4 5
—t/[GeV?]

Lattice: (2007) Brommel's dissertation.

GPD + Ding et al.

1 04
1 03}

| 02}

dxr x (H,?Jr (z,0,1) + H:Jr (—x, 0, f])

|sospin-symmetric limit

Ba (t; £5) = Lattice
& (f: () - GPD

©3(0)/2 =< = >= 0.261(5)

O2(0)/2 =< & >= 0.242(20)

-1[GeV]

Latt.ice data: D. Brommel, Ph.D. thesis, U. Regensburg, Germany (2007), DESY-THESIS-2007-023
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A word about gravitational form factors:

1 . 1
/ de v H(x, & t) = cél’](t) + £ / z z D(z,1)

1 1

3/2- Gegenbauer expansion

1 D(~ AN d (f (w, (3/ '.2]
Hg(t) — / dr x (H}:+ {;E, U, f) + H:Jr (—;E, U, f)) k ;dd '
J-1
) J
4 (t) ~ Only the first coefficient
5 "1V is needed!

LFWF + overlap approach cannot give access to the second gravitational moment. The
Radon transform inversion of the DGLAP GPD cannot either (as it is nothing but a D-
term contribution).

A possible way-out is considering unsubtracted t-channel dispersion relations to provide
with a representation of the D-term form factor
[See Pasquini et al., PLB739(2014)133, precisely determining d;(t)for a nucleon case]

On the other hand, the soft-pion theorem opens a window to fully constraint the D-term
and thus this second gravitational factor can be estimated at t=0. E.g., in the algebraic
asymptotic model, one is left at the hadronic scale with: 1

ymp f_ldzzD(z,O):—l



Conclusions

Owing to a sensible parametrisation of the BSA grounded
on the so-called Nakanishi representation, one is left with
a flexible algebraic model for the LFWF in terms of a
spectral density.

21



Conclusions

spectral density.

A direct calculation of the PDF from realistic quark gap and
Bethe-Salpeter equations' solutions (in the forward
kinematical limit) delivers a benchmark result to identify the
spectral density which corresponds to the realistic LFWF.
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A direct calculation of the PDF from realistic quark gap and
Bethe-Salpeter equations' solutions (in the forward
kinematical limit) delivers a benchmark result to identify the
spectral density which corresponds to the realistic LFWF.

The overlap representation provides with a simple way to
calculate beyond the forward kinematic limit, and thus
obtain the GPD, although only in the DGLAP region.
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q(x)

A direct calculation of the PDF from realistic quark gap and
Bethe-Salpeter equations' solutions (in the forward
kinematical limit) delivers a benchmark result to identify the
spectral density which corresponds to the realistic LFWF.

The overlap representation provides with a simple way to
calculate beyond the forward kinematic limit, and thus
obtain the GPD, although only in the DGLAP region.

A recently proposed PI effective charge can be used to make the | g, o
DGLAP GPD evolve from the hadronic scale (where quasi-particle 2| | 3
DSE's solutions are the correct degrees-of-freedom) up to any other

relevant scale. B gl

1 MR l
K(GeV] |
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Conclusions

Owing to a sensible parametrisation of the BSA grounded
on the so-called Nakanishi representation, one is left with
a flexible algebraic model for the LFWF in terms of a
spectral density.

Bethe-Salpeter
kinematical limit

eeeeee

The overlap representation provides with a simple way to
calculate beyond the forward kinematic limit, and thus
obtain the GPD, although only in the DGLAP region.

« Exp. agl

A recently proposed PI effective charge can be used to make the [
DGLAP GPD evolve from the hadronic scale (where quasi-particle z| |
DSE's solutions are the correct degrees-of-freedom) up to any other
relevant scale.

— This work 7
.— R-Qetal (2018)| |

K[Gev] |
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