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Introduction

Introduction

@ compartmental epidemiological models divide the population into
pools such as
Susceptible, Exposed, Infectious, Quarantined, Recovered, etc.

@ the dynamics is often described by ordinary differential equations

@ the variables of these models are the number of people in these
pools (S(t), E(t), etc.)

@ at any time the change of these variables depend on themselves
at the same time (no memory).

@ The parameters of the models (transition rates between the
pools) may depend on time



Introduction

Notations & definitions

@ We compare different models in a highly simplified scenario

@ incubation period: the period of time between exposure and
when symptoms begin

@ f, : "exposed” part of incubation period when a person is not yet
infectious

@ {; : "infectious” part of incubation period when a person is still
asymptomatic

@ fincubation = fe + tj out of which a person infects others for {; days

@ we assume that everyone gets quarantined (and reported) when
symptoms begin.

@ Ry : basic reproduction number: average number of new
infections caused by a single person



Introduction

The SEIR model
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@ Four compartments for a population of size N=S+ E+ I+ R
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@ For the initial phase S ~ N, two coupled equations for E & I
d (E\ [(—1/te Ro/ti\ (E . L B

@ We use this simple case to demonstrate SEIR’s flaws (extension
to the full model is trival)



Introduction

The SEIR model Il

S R

@ transition rates are assumed to be proportional to the number of
people in the pools

@ on average people spend t; and f; days in E and /

@ everyone leaves the pools with the same probability, irrespective
of how much time they actually spent there

@ any change in 5(Ry) immediately changes the | — R rate
(no delay)



Integral equation

How to do it correctly
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@ a single function can describe the full history and all the pools
@ p(t) is the number of new infections on day ¢
@ EXPOSED: everyone who was infected less than t, days ago

@ INFECTIOUS: everyone who was infected less than t, + f; and
more than t, days ago
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Integral equation

How to do it correctly
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@ as time passes people automatically switch categories

@ the only non-trivial ingredient which determines the dynamics is
the rate of new infections

t—te RO

p(t—i—"):ﬁ Z p(T), B = I
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Integral equation

How to do it correctly
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@ continuous case:
p(t)dt is the number of new infections between t and t + dt
@ dynamics is described by an integral equation:

t—te
oty=p[  prydr,  p=0

t—ti—te ti

@ known since 1920’s but not widely used
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Determination of R,

Determination of Ry

@ exponential growth solves both the SEIR- and the integral
equations: E(t), I(t), p(t) < exp(Af)

0 REFM — 1 L \(te+ 1)+ )2 tot; and  R{MI? — A
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@ a discretization of the integral method with At yields

R(()d|scret|zed) (e)\m 1)/()\At) ) R(()integral)

@ for small \ig, A\fj an expansion gives

R(()integral) — 14+ )\(te + %) + /\z(g tet, + 42) + (’)()\3)

° R(()i”tegra') £ R(()SE'R) — SEIR is never a good approximation!
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Determination of R,

Determination of Ry
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@ parameters consistent with the initial exponential phase in NYC
@ 1/\ =1.78 days, te + t; = 6.4 days [Backer,Klinkenberg, Wallinga, 2020]
@ SEIR is symmetric for t; <+ t; exchange, weak dependence on t;
@ integral equation solution depends strongly on ¢

@ hourly discretization is sufficient

@ intial Ry in NYC could have been as high as 20
(vs. 7-8 from SEIR)
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Changing Ry, delay & oscillation

Changing Ry, delay & oscillation
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@ reported cases:

people leaving /, i.e. dR/dt for SEIR, p(t — te — {;) for int. eqn.

@ What if Ry is suddenly decreased (e.g.

@ SEIR prediction changes immediately

to 0.95 on day 73)?

@ integral egn. provides a delay and an oscillation with ., f; scales
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Changing Ry, delay & oscillation

The integral equation at work
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Changing Ry, delay & oscillation

Smoothening the change
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@ decreasing Ry gradually to 0.95 during days 71-74
@ delay and oscillation still present but with smaller amplitude
@ comparing with actual data one may read off f,, t;
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Changing Ry, delay & oscillation

Smoothening the change
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@ decreasing Ry gradually to 0.95 during days 71-74
@ delay and oscillation still present but with smaller amplitude

@ Data from NYC, ltaly, Spain, Germany, the Netherlands gives
to + t ~ 7.4 days
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Changing Ry, delay & oscillation

Time dependence of Ry

@ Once [, and t; are known, one can solve the integral eqn. for Ry

Ro(t) = tip(t)

—to
ot p(T)dT

@ we assume that the measured data represents p(t — te — ;)
@ we interpolate the data using a cubic spline

@ as an illustration we apply this with ¢ = 6 days and t; = 1.4 days
for several regions
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Changing Ry, delay & oscillation

Time dependence of Ry
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Changing Ry, delay & oscillation

Time dependence of Ry
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Time dependence of Ry

Ro

Changing Ry, delay & oscillation

The Netherlands
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Changing Ry, delay & oscillation

Time dependence of Ry
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Changing Ry, delay & oscillation

Generalizations
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@ Inreality t, and t; are described by probability distributions
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@ dynamics is governed by P(7):
the probability that a person at time 7 after exposure is infectious

o) =5 /O ot —n)P(r)dr, Ro = /0 " P(r)dr
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Changing Ry, delay & oscillation

Extensions

@ inclusion of S is trivial

00 t
o) = 50 /0 o(t—7)P(r)dr. sty=N— [ p(r)ar

— 00

@ one can have multiple sub-compartments described by
pi(t) and cross-infection rates 3;
(age groups, location, showing/not showing symptoms, etc.)

t
p] ’ i = INj— i
/ (t—1)P(r)dr. Si(t) =N /_Oop(T)dT
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Conclusions

Conclusions

@ SEIR-like differential equations fail to correctly describe the
dynamics of epidemics

@ Ry is incorrect (even for small incubation period)
e the delay after change of Ry is not explained
e the oscillation after change of Ry is not explained

@ the integral equation formalism corrects all these shortcomings
@ change of Ry after interventions can be monitored

@ any extension of SEIR can also be included in the integral
formalism

@ Future decisions should be based on the integral equation
formalism
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