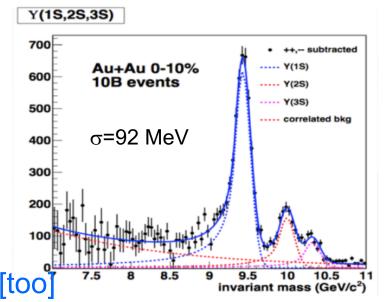
Toward detector requirements: What tracking momentum resolution is required to separate the 3 Upsilon states?

Spencer Klein LBNL

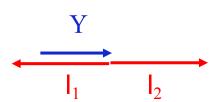
EIC WG meeting, April 23, 2020


- Why this matters: The three Y states are three different particles, with different wave functions. By studying all three states, we probe nuclear targets with three different dipole wave functions
- What resolution is required?

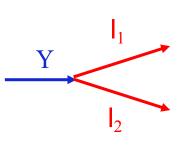
What is needed

- Studied in Y-> ee and μμ
- Upsilon masses:
 - ◆ Y(1S): 9460 MeV
 - ♦ Y(2S): 10023 MeV; ∆m₂₁=331 MeV
 - ♦ Y(3S): 10355 MeV;
 ∆m₃₂=331 MeV [too]
- Y Separation is the signature tracking requirement for sPHENIX.
- S. Tardafar for sPHENIX, PoSMPGD, 2017067

- 1.5 σ from peak to mid-point cut line
- 20-40% better resolution is desirable
- 3 components to resolution |p|, zenith & azimuthal angles
 - ◆ Today (like almost everyone else) will focus on |p|, since it involves sagitta, which is small for large |p|
- N. b. Rough estimates for pedagogical purposes
 - Simulations are needed

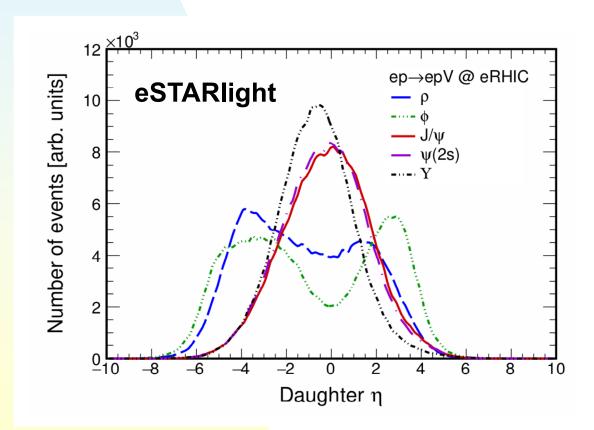


Momentum Resolution for σM_{II} =100 MeV

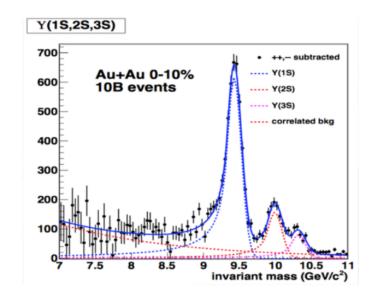

- $M_{||}^2 = E^2 p^2 = [\sqrt{m_1^2 + p_1^2} + \sqrt{(m_1^2 + p_2^2)}]^2 (p_1 + p_2)^2$
- Assume $m_1 < |p_1|, |p_2|$
- First consider photoproduction, with Q² ~ 0, so net dilepton p_T is small, near mid-rapidity
 - ◆ Leptons are back-to-back azimuthally
 - \bullet θ = angle between leptons, ~ 180°
 - ♦ $|p_1|$ ~ $|p_2|$ ~ 5 GeV/c
- $M_{\parallel}^2 = \sim 2|p_1||p_2|(1-\cos(\theta))$
- For $\theta = 180^{\circ}$ and $|p_1| \sim |p_2| = p$
 - \bullet $M_{II}^2 = 4p^2$
 - ♦ $M\sigma_M$ =4p σ_p and M ~ 2p,
- We require $\sigma_p = \sigma_M/2 \sim 50 \text{ MeV/c}$, or $\sigma_p/p \sim 1\%$
- Uncertainty on emission angles is neglected
 - ◆ ATLAS dilepton experience is that this is small

Momentum Resolution for Q²>0

- $Q^2 \sim p_{T,U}^2$
- Q² reach is somewhat limited due to statistics.
 - ◆ Consider Q²=(3.75 GeV)²
- Individual lepton p_⊤ depend on orientation
 - ◆ Aligned one p rises, the other drops
 - $+ M_{\parallel}^2 = 4|p_1||p_2|$


- Constraint becomes $\sigma p_1 = M \sigma_M / 4 p_2$, plus switched version
 - P_{slower}=3.1 GeV/c, p_{_faster}=6.8 GeV/c
 - $\sigma p_{faster} = 80 \text{ MeV/c}, \ \sigma p/p = 1.1\%$
 - $\sigma p_{slower} = 36 \text{ MeV/c}, \ \sigma p/p = 1.1\%$
- Needs checking, but conditions seem relaxed(?)
- ◆ Perpendicular; both p rise, opening angle drops
 - + $M_{\parallel}^2 = \sim 2p^2(1-\cos(\theta))$ so $\sigma p = M\sigma M/2p(1-\cos(\theta))$
 - Rough estimate cos(θ)=0, p~6 GeV
 - $\sigma_p \sim 80 \text{ MeV}$, so $\sigma p/p = 1.3\%$
- Q²>0 slightly relaxes momentum resolution requirements

η range


Should cover most of the lepton daughters from Y decays

- ◆ Cost/benefit question in rapidity coverage
 - 4< η < 4 seems like a reasonable choice</p>

Technical Summary

- sPHENIX criteria for separating 3 Y states:
 - σM_{II} = 100 MeV/c
 - 20-40% better than this would yield physics gains

- Requires $\sigma |p|/p \sim 1\%$ at 5 GeV/c for $Q^2 \sim 0$
- Other considerations:
 - \bullet $\sigma(\theta)$ angle wrt the beampipe (for rapidity determination)
 - • σ(φ) azimuthal angle is likely important for determining Y p_T
- Do we need limits on material, which can affect the low-mass bremsstrahlung tail?
- How sophisticated/nuanced do the requirements need to be?

"Detector Requirement" language

- How formal should they be
- Tentative proposal:
 - ♦ Tracking momentum resolution $\delta p/p<1\%$ for p=5 GeVc in the momentum range for 4< η < 4
 - A case could be made for a slightly tighter choice
- Alternate less detector focused approach:
 - Upsilon mass resolution for ee and $\mu\mu$ channel σ_M <=100 MeV/c
- Even less detector specific
 - Able to separate the three Upsilon peaks
- Optional some limit on material budget to minimize bremsstrahlung tails